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1 Introduction

A companion [1] to this Report discusses motivation for the analysis of near net-shape stress-coated mem-
branes, and presents details of the derivations of four different theories of the mechanics of such a laminate
using the method of asymptotic expansions. Our goals here are to present solutions of selected boundary
value problems, and to compare the results with those obtained by the finite element (FE) method where
available. Each of the next four Sections will be organized in a similar way, i.e., the governing equations for a
given theory will first be restated from Reference [1], boundary conditions will then be imposed, and details
of the solution procedure for each such set of boundary conditions will be presented. Finally, graphical
comparisons will be made between the solutions of a given boundary value problem, and those using FE
analysis.

With regard to nomenclature and notation, all problems presented here involve an N-layer structure
consisting of a membrane substrate of thickness hy = hs having N — 1 coatings with thicknesses h;, i =
1,...,N — 1, and total thickness h = h; + h., where h, = Zk;ll hy, is the total coating thickness. This
structure has a circular boundary of radius a. The reference configuration S of the coated membrane is
defined by a mapping from a purely geometrical region C, which we refer to as the reference placement. This
mapping is illustrated for a single coating in Figure 2 of Reference [1], and reproduced below as Figure 1.
As shown in the Figure, the coating and membrane thicknesses are assumed to be constant along any line
parallel to the axis. The reference placement for N — 1 coatings is illustrated in Figure 5 of Reference [1],
and reproduced below as Figure 2. Note that the coatings are “on the bottom”. The basis of this rather
counterintuitive orientation is the optical convention that the direction of propagation of light, which strikes
the coating first, coincides with the positive Z-direction (upward in our Figures). The coordinate { = Z+h/2
shown in Figure 2 is convenient for labeling the top and bottom surfaces of each layer, and we note from
Figure 2 the important relation & = Y, _; h«.

The following constants appear in the through-the-thickness integrals of the constitutive relations defining
the stress resultants and stress couples, treated in detail in Appendix A of [1]:

N 1 N-1 N
N=3) S, M=353 > hh(Si—5), (11)
i=1 t=1 k=1i+1
N N
A=) Qi A =) hQui, (12)
i=1 =1
1 N-1 N 1 N-1 N
B =3 S > hh(Qi-Q), B, = 3 > ki (Quvi — Quw), (L3)
i=1 k=i+1 v i=1 k=1i+1
N 1N——l N
A@ = Z hiGi; Bg = 'é' Z Z hihg (Gt - Gk)a (14)
=1 i=1 k=1i+1
1 N
- b | B2 — 1\ _ , -3 :
D= 12; Qi ki [h, +3(h = hi)® — 1261 (h gz)}, (1.5)
1 N
- - hs | B2 I SR ) — .
D, = 12; Qivihi 12 +3(h = ho)® — 126 (h &), (1.6)
1 N
- b | B2 I AT . Y
De = 12; Gi ks [hz +3(h - k)’ = 1261 (h g,)], (1.7)
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Figure 1: Definition of the reference configuration S (upper part of Figure) of a coated membrane shell of
revolution as a mapping from the reference placement C (lower part of Figure), assuming the layer thicknesses
to be constant along any line parallel to the axis.

where, in (1.1), S; is the residual stress load in layer i. The elastic constants of the material in each layer
appear in the forms
E.

E.
— 2 PR K
Q"l—u,?’ G’_1+u,~

, (1.8)

where E; and v; are Young’s modulus and Poisson’s ratio for material i. The areal density of the coated
membrane (mass per unit area of the circular disk perpendicular to the axis; units of kg/m?) is defined and
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Figure 2: Reference placement C of an N-layer stack.

denoted by
N
Y% = Y hipois (1.9)
i=1

where po; is the volume mass density of the material in layer 4. The external loads are the pressure difference
p=p~ — pt between the two faces of the coated membrane, and the gravitational body force v g (where g
is the gravitational acceleration) in the positive axial direction (up) of our two Figures.

We realized only after the publication of Ref. [1] that the nine A, B, and D coefficients were not inde-
pendent. We in fact find the following three relations between the multilayer coefficients (recall that each
layer is assumed to be uniform, homogeneous, and isotropic in its material properties):

Ao =A-A, Boe=B-B, Dg=D-D,. (1.10)

Similar to Jones [2, p. 155), we refer to A as the estensional stiffness, B as the coupling stiffness, and D
as the bending stiffness of the multilayer laminate. It is convenient to also introduce extensional, coupling,
and bending Poisson’s ratios defined by

AV DV
- and vp = — (1.11)

vy = R

VB =

=
B )




——

respectively. Note that for a single layer with Poisson’s ratio v, or for a multilayer in which all layers have
the same Poisson’s ratio v (an unlikely possibility), the three Poisson’s ratios defined in (1.11) are all equal
to v as well. Equations (1.10) can be written in terms of the stiffnesses and Poisson’s ratios as

A9=A(1-—VA), Be=B(1—VB), D9=D(1—VD). (1.12)

The most important initial shape for optical purposes is a paraboloid, so throughout this Report we
consider a membrane cast on a paraboloidal mandrel (also referred to as “the mold”), then coated on the
mandrel, and subsequently released from the mandrel as a near net-shape coated membrane laminate. We
assume that the coated membrane middle surface is governed by the equation

_ 1 2 o
I'(R) = if (a* - R?), (1.13)
where f is the focal length of the reference paraboloid. A flat middle surface is modeled by a paraboloid
having an “infinite” focal length, in which case I'(R) = 0. From (1.13), the central (or vertex, or apex)
displacement of the paraboloid is given by

a2
Fo = F(O) = Zf', (114)
and its slope at any point R is

R
L= -37

The f-number of the paraboloid, which we denote by F#, is defined by

(1.15)

T 1.1
F# = o (1.16)
hence the ratio of apex deflection I'y to the radius a can be written as
Ty 1
— = E (1.17)

In the optics literature a paraboloid with (for example) an f-number of 2 is referred to as an f /2 paraboloid,
and we indicate this by writing F# = 2. The ratio (1.17) for an f/2 paraboloid is 1 /16, or 0.0625.
It is often more convenient to write (1.13) in terms of a parameter x defined by

K= % = 4—6—;?, (1.18)
in which case we have .
I'(R) = 3 (a* - R?). (1.19)
Note that the principal curvatures k; and &y of the paraboloid are given by
Ky = (1—_—;%27%, and Ky = (T_—;_z';{z“)l_/z’ (1.20)
which are equal only at the vertex R = 0 of the paraboloid, where k; = Ky = —k. Thus, & is the (negative)

vertex curvature of the paraboloid, and k = 0 as f — o0, i.e., as the paraboloid flattens into a plane.

Unless otherwise stated, all variables appearing in this work are leading order functions of the cylindrical
coordinates (R, ©, Z) on the reference placement C. The subscript (0) used to denote leading order variables
in Reference [1] will be omitted in all that follows. Reference [1] should be consulted for further details on
the definitions of the functions appearing in the equations of this Report.




2 Geometrically Linear Membrane Laminate Problems

The simplest of the theories presented in Reference [1] is that of a geometrically linear coated membrane
laminate. It is the only theory for which we consider solutions that are non-axisymmetric. The equations
governing the mechanics of such a laminate are given in §11 of that Report, which are repeated here, beginning
with the strain-displacement relations, then the integrated through-the-thickness forms of the constitutive
relations, and finally the equilibrium equations stated in terms of stress resultants (stress couples do not
appear in a membrane theory). Throughout this Report, a reference to an equation in [1] will be distinguished
by appending a “.I” extension to the referenced equation number.

2.1 Pressurized Membrane Laminate with ©-Dependent Boundary
For membrane laminates, the leading order displacement components are given by
Urp = u, Uo = v, Uz = w, (2.1)

where u, v, and w are functions of R and © only. The leading order strain-displacement relations are found
in equations (11.20.1)~(11.22.1), viz.,

1 Ue—U
cho = 5 (v,R+ ~— ) (2.2)
€hr = UR, (2.3)
ve t+Uu
Qo = “E. (2.4)

The stress resultants (11.29.I)—(11.31.I) result from through-the-thickness integrals of the leading order
constitutive relations (11.17.1)-(11.19.1), yielding

NR = N + Af%R + Ay 6%9, (25)
Npo = Ao €%o, | (2.6)
No =N+ A, ép + Aede. (2.7)

Finally, recalling the definition w(R) = I'(R) + w(R, ©), the leading order equilibrium equations are given
in terms of the stress resultants by equations (11.26.1)—(11.28.I): :

(RNR) p = No + Nre,e =0, (2.8)

(RQNRe)ﬁ + RNeg =0, (2.9)
[R (I"RNR-}-’LU,RNR + E5@-]\71{@)] R + (F,RNR@ +’w’RNRe + %QN@) o + (p + ')‘og)R = 0.(2.10)

We seek solutions of (2.2)—(2.10) for an initally flat coated membrane, so that I g = 0, and withu =v =0
for all R. When these hold, we have €}g = €%y = €25 = 0, hence Ngp = No = N and Nge = 0. Equations
(2.8) and (2.9) are then identically satisfied, and (2.10) reduces to

(RwrN) g + 2o n) 4 (p+vg)R =0. (2.11)
R ©

5




Carrying out the differentiations in (2.11), we obtain

WR | Wee P+ %9

— - = — 2.12
R TR N (212)

noting that A is constant. The left-hand side of this equation is recognized as the Laplacian of w in plane

polar coordinates, hence the equation can be written as

W RR +

1 N
Viw = ——, = , 2.13
fo fo P+ %9 (213)
where fo is a constant with units of length (m).
We seek solutions of (2.13) in the form of a Fourier series:

oo
w(R,0) = Y [An(R)cos (nO) + B,(R)sin (n®))], (2.14)

n=0

where the functions A,(R) and B,,(R) are to be determined. Taking the required partial derivatives of (2.14)
and substituting the results in the left-hand side of (2.13), we obtain

0]

Z { [A%(R) cos (n®) + Bj;(R) sin (nO)] + % [A7,(R) cos (n®) + B, (R)sin (n®))

n=0

n? . 1
~ 75 [Au(R) cos (n®) + By (R)sin (ne)]} = -7 @1)
where a “prime” denotes a derivative with respect to the argument of a function. Since the trigonometric
functions sin (n®) and cos(n®) are linearly independent for each value of n, the last equation yields the
following ordinary differential equations for A4,(R) and B, (R):

1 1

A Al - = )
o(R) + 7 Ao(R) A 0, (2.16)
A" 1, n? _
WB) + ZALR) - AR =0, n#0, (2.17)
" 1 ! n2
B, (R) + }—an(R) - —R—an(R) =0, n # 0. (2.18)
Equation (2.16) is easily solved to obtain
— 1
Ao(R) = a9 — i Re, (2.19)

where ag is an arbitrary integration constant, and the other integration constant was set equal to zero to
insure regularity of Ag(R) at R = 0. Equations (2.17) and (2.18) are “equidimensional” [3, §1.6] linear
differential equations. They can be reduced to linear differential equations with constant coefficients by
introducing a new independent variable £ defined by

§E=InR = R=¢ (2.20)

Setting An(R) = An(ef) = A,(€) and B.(R) = B,(ef) = B,(£), and using the chain rule to compute the
derivatives, equation (2.17) reduces to

A€ - n?An(6) =0, n#0, . (2.21)




and similarly for (2.18). The two linearly independent solutions of (2.21) are An(€) = e and An () = e,
hence A,(R) = R" and A,(R) = R™™, so the general solutions of (2.17) and (2.18) are linear combinations

of these, viz.,
An(R) = anR™ + o R7", and B.(R) = b, R" + d, R7™, (2.22)

where @y, bn, ¢, and dp, are arbitrary constant coefficients depending on n. However, since the solution’
must be regular at R = 0 for any n # 0, we must set ¢, = d, = 0 for each n. Substituting the results into
(2.14) yields the general solution:

w(R,0) = ay — Zl—f—R2 + Y [anR" cos (nO®) + by R sin (nO)], (2.23)
n=1

where the coefficients ag, an and b, must be determined from the boundary conditions. Typically, one is
given the form of the displacement field on the boundary edge R = a, i.e., w(a,®) = W(O). The Fourier
series coefficients Cp = ap — a?/(4fo), Cn = ana™, and D, = bpa™ are deternnned in the usual way [3, §5.11]
from

w(a,®) = W(®) = Co + Y [Cncos (nO) + Dy sin (nO)],
n=1

1 27
Co = — W(©)do

2m 0 (2.24)
Cp, = 1 W(®) cos (n®)do,

T Jo

1 27
D, = - W(O) sin (n©) dO .

0

Having determined C,, and D,,, we can replace a, = Cp/a™ and b, = Dp/a™ in (2.23), and the solution
takes the final form
1 oo}
w(R,0) = Co + 7 f — R?) + Y [Cn(R/a)" cos (n®) + Dn(R/a)" sin (nO))]. (2.25)
0 n=1
2.2 Vibrations of a Membrane Laminate

We conclude this brief Section with a digression on the subject of membrane dynamics. We begin by
asserting, without proof, that the dynamical leading order momentum balance equations are the same as
the equilibrium equations (2.8)—(2.10), with the exception that the right-hand sides are replaced by inertia
terms comprised of products of the areal mass density 7o and an acceleration component (each equation has
also been premultiplied by R), i.e

(RNR) p — Ne + Nree = Yo Ru, (2.26)

(R’Nge) p + RNee = 10 Ruvu, (2.27)

[R (F,R Nr+wrNg + w?eNRe )],R + (F,RNRe +w,rNge + w—g)-Ne),e

+ (P + 'YOQ)R = 70Rw,tt- (2.28)




We consider free vibration solutions of (2.26)-(2.28) for which u = v = 0, assuming there is no pressure
load, and ignoring the effects of gravity. We further assume that we have an initally flat reference configu-
ration, so that I' g = 0. The conditions u = v = 0 again imply €} = €} = €3g = 0, hence Ng = No =
and Npe = 0. Equations (2.26) and (2.27) are then identically satisfied, and (2.28) reduces to

(RwrN) p + (E)}’Te/\f) o = Yo Rws (2.29)

Assuming N to be constant, we carry out the differentiations in (2.29) to obtain

W.R w oo Y
W RR + B + R - va,u. (2.30)

The left-hand side of (2.30) is the Laplacian of w, hence we can write the equation as

V2w ke Elf'w,tt = 0, (231)

which is the homogeneous wave equation for an axial displacement having propagation velocity

N
=.=. 2.32
c - (2.32)

The solutions of (2.31) are well-known (see, for example, [4, p. 635]), and will not be repeated here. However,
.the angular frequencies of vibration are given by

c | N
Wmn = Qma = = Qmn{| —3 , (2.33)
a Yo @

where a is the membrane radius, and a,,, is the mth positive zero of the ordinary Bessel function J, of
order n (n=0,1,2,...), i.e., @mn is a solution of the equation Jn(amn) = 0. Note that the tension T' which
appears in the small oscillation theory of a single material “drumhead” is replaced in this theory of a coated
membrane laminate by the net residual stress resultant A defined in equation (1.1).

3 Geometrically Nonlinear Membrane Laminate Problems

The leading order strain-displacement relations are given by equations (9.27.1)-(9.29.1), which contain non-
linear terms in the axial displacement derivatives:

1 ug —v I gpw w RW
o _ 1 ,© LRW,© JRW.© _
6Re - 2 <U1R+ R + R + R )9 (3.1)
1
¢kr = wr + T RwR + 3 (w,r)?, (3.2)
0 ve +u (w,e)2

The stress resultants and equilibrium equations are given by equations (9.33.1)-(9.38.1), which are the same
as those of the previous §2:

A”R = N + AC%R + Ay 6%9, . (34)




Nro = Ae €}o, (3.5)

No =N+ A, %p + Aedo. (3.6)

and
(RNR) p — No + Nre,e =0, (3.7)
(R’Nre) p + RNee =0, (3.8)

[R (I‘,RNR+w,R Ng +%—%9NR@)]’R + (F,RNR@ + w,rNre + %N@),e +(p+g)R =0.(3.9)

3.1 Reduction to an Axisymmetric System

We specialize immediately to the case of an arisymmetric system by assuming that none of the variables
depend on the angular coordinate ©. Thus, all terms involving partial derivatives with respect to © vanish,
leaving the following simplified set of strain-displacement relations and equilibrium equations:

€ho = % (v,n E %), ' (3.10)

€krn = ur + T RwR + %(W,R)za (3.11)

€do = %, (3.12)

(RNg) g — Ne =0, (3.13)

(R’Nge) 5 = 0, (3.14)
[R(CrNrR+wrNr) g+ (P+%9)R =0 | (3.15)

Equations (3.14) and (3.15) can be integrated once to obtain
R?’Npo = Cre, (3.16)
and
R2
R(CrNr+wrNg) + (p+ %9) 5 = Cr (3.17)

where Cro and Cg are arbitrary integration constants. We must set both of these constants equal to zero
to insure that both Nge and Ng are regular at the origin R = 0. Thus, (3.16) and (3.17) reduce to

NR@ = 0, for all R. (3.18)

R
TaNp+wrNp+ (p+%9)5 =0 (3.19)
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From (3.18), (3.5) and (3.10) it then follows that

& = _;_ (v - %) =0, (3.20)

since Ae is in general nonzero. Equation (3.20) is easily solved to obtain v(R) = vgR, where v is an arbitrary
constant. We observe that if v vanishes for any non-zero value of R, say Ry # 0, then v(Ry) = voRy = 0,
hence v = 0, and so v vanishes for all R.

The system of equations that remains to be solved is then

hn=un+Taun+ 5 wa), Qo= = (3.21)
Nr=N+ Ar + A, €, (3.22)

No =N+ A, % + Adg, (3.23)

(RNg) g — Ne =0, (3.24)
P,RNR+w,RNR+(p+')’Og)§ = 0. (3.25)

3.2 Generalization of Hencky-Campbell Theory to a Membrane Laminate

We continue the reduction by specializing now to an initially flat coated membrane, so that I' p = 0, reducing
the system of equations to

€k = up + %(w,R)2, o = %, (3.26)
Ne=N+Adp + A, 20, (3.27)

No =N+ A, hp + Adg, (3.28)

(RNR)p = No =0 = Ng = Ng + RNgp, (3.29)
wrNr + (p + 709)? = 0. (3.30)

This system is augmented by the usual compatibility condition obtained by eliminating u between the two
strain-displacement relations (3.26), yielding (see, for example, [5]):

1
0 - 0 0 2
Rego r = €rr — €30 — 2 (w,R)”.

(3.31)
We proceed by introducing a dimensionless coordinate p and dimensionless displacement components 4

and @ defined by

R

=, u
a

m

p ) w

]
SHES
i
SRS

- (3.32)




together with the following dimensionless constants:

_ A =_ A 2 _ N _(p+ mg)a
VA=T4‘7 E—E(I_VA)ﬁ T=—E,—h7 q= —Eh P (333)
and two new dimensionless dependent variables z, and zg defined by
T, = &2-_———/\-/, Ty = ﬁ(—9;—.——£\/- (3.34)
Eh Eh

Note that v4 is the extensional Poisson’s ratio defined earlier in (1.11), while E acts as the “effective”
Young’s modulus of the coated membrane laminate. Equations (3.26)—(3.31) can be rewritten in terms of
these dimensionless quantities as

~ 1. u
C%R = Up +- §w,2p, €ge = (335)
p
1 0 0
2 = |1 =7 (ehr + vA€do) s (3.36)
1
Ty = (I-—_I/j-) (6066 + va CORR), (3.37)
Tg = Tr + PTrp = (pmr),p’ (3-38)
W, (T + zr) + q%’ = 0. (3.39)
L .
pede, = €kr — o — 3T (340)

These equations have precisely the same form as Campbell’s [6] equations, which are themselves modifications
of Hencky’s [7] membrane equations to allow for an initial tension in the pressurized membrane. Equations
(3.36) and (3.37) are easily inverted to obtain

6(1)211 = Z, — VA Zp, (3.41)
Qo = Tp — VAT, (3.42)

which, together with (3.38), can be substituted in (3.40) to get the compatibility condition in terms of z,

and zg:

1_
p(zr + 24) , = — §w,2p. (3.43)

We now use Equation (3.39) to eliminate @ , in equation (3.43), yielding the following equation involving
only the z’s:

T, + Tg 2
(r + =) [(—f————)—"] +ZL =0 (3.44)
p 8
It is convenient here to rescale 7, z,, zg, and @, i.e., we set
_ l 2/3 = - l 2/3 = — _1_ 2/3 = ~ _ 1/3—
T=2900T, zr = ¢ Ir, g = —q°'° Ty, W= w (3.45)
4 4 4
to write equations (3.39) and (3.44) as

T, (T + %)+ 2 =0, (3.46)
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and ( )
T, + Ty
7 + z,)° [—p—"] +8 =0, (3.47)
respectively.
We assume a power series solution for Z,(p), and find after some numerical experimentation that only
even powers of p will contribute. It is convenient to write the series in the form

o0
T, = —T + by <1 + Z bon p2n) . (348)
n=1
From this and the second equality of (3.38) it follows that
[o o]
Ty = (p2r) , = =T + bo [1 + Z (2n + 1) bay, p2"] . (3.49)
n=1
The sum of the last two equations yields
oo
T, + Tp = =27 + 2b, [1 + Z (n+1)byp pz"] , (3.50)
n=1
hence, noting that 7 is a constant,
I, + T s
&+ %), = 4b Z n (n+ 1) ba, p*2. (3.51)
n=1

This expression, together with (3.48), is now substituted in (3.47), and the coefficients ban, n > 1, are then
determined by equating to zero the coefficients of like powers of p- We find, using the Mathematica computer
algebra system, that by, is given in terms of b, by

,BZn

b2n. = -—bg_n, n Z 1, (352)
where the Sz, are purely numerical coefficients given, for 1 < n <9, by
2 13 17 37
ABZ = 1, ﬂ4 = ﬂﬁ = 75 .38 = o0 ,510 =
3 18 18 27 (3.53)
By = 1205 By = 219241 _ 6634069 _ 51523763 ’
27 567 M7 763504 18 = 1143072 ¥ 7 5143824

In order to determine the coefficient by (in terms of which all the other coefficients b2 can be calculated),
we must impose boundary conditions.

We consider here a clamped boundary, requiring u(a) = 0 and w(a) = 0, or equivalently, %#(1) = 0 and
w(1) = 0. From the second equation of (3.35), together with equation (3.42), we have the following power
series representation for u:

- 1 - - "
u(p) = pege =p(ze —vaz,) = Zq2/3p [—T(I—VA) +b(1—va) + by Z(2n+1"VA)b2nP2 jl .

n=1

(354)
Applying to this expression the boundary condition on @ at p = 1 yields an equation which must be solved
numerically for bg:

bol:l—VA"f'f:(Qn-l-l—l/A)bzn]—(1—114)?:0. (3.55)

n=1
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After determining bg, which in general can be seen from (3.55) to depend on both v4 and 7, the series
solution for the radial displacement #(p) is given by (3.54).

The dimensionless axial component of displacement W(p) can be obtained by assuming an even power
series of the form

w(p) = Z can P77, (3.56)
n=0 :
the derivative of which is -
W, =2 nemp" (3.57)
n=0

This is substituted, together with (3.48) and (3.51), in (3.46), to obtain an equation from which the coeffi-
cients ¢2n, 1 > 1, can be determined by comparing like powers of p. Again using the Mathematica computer
algebra system, we find the coefficients can, n > 1, to be given in terms of by by

Com = Z’;’;‘ B, n>1, (3.58)

where the -y, are purely numerical coeflicients given, for 1 <n <9, by

L ol s _m 7
T2 = 4, Y4 = 21 Y6 = ga 8 = 72, Y10 = 6) (3 59)
205 17051 2864485 103863265 ’

M2 =7gg0 M4 T g0 76 T Tog0320 T 10287648

The remaining constant co is determined by the clamped edge boundary condition w(1) = 0, hence from
(3.56):

o0
= _Z Can = bg Z;;; | (3.60)
=1
After determining cp, the dimensionless axial dlsplacement component W(p) is given by the power se-
ries (3.56).
Power series solutions for the displacement components (as well as the stress and strain components)
having the proper physical units can be obtained by restoring the scale factors introduced in equations
(3.32), (3.34), and (3.45). For example,

u(R) = ai(R/a) = %qz/‘"‘R ~7T(1~va) + bo(L—va) + bo i(2n+1 —va)bon(R/a)™|, (3.61)

n=1
and
w(R) = a®(R/a) = aq"*T(R/a) = ag/? Z can (R/a)*™, (3.62)
n=0
and the apex deflection wp = w(0) is, from (3.62):
wo = ag’?co. (3.63)

3.3 Applications to Bulge Testing

The last equation (3.63) is useful for the analysis of data obtained from bulge testing (see, for example, [8,
9, 10] for descriptions of such tests), a method under consideration for experimental determination of the
intrinsic coating stress. A brief discussion of such an analysis will follow, but first we compare graphs of
apex deflection versus pressure, using (3.63), to those obtained from FE analysis. Figure 3 shows the results
when N = 0, i.e., for a zero net residual stress resultant. The coated -membrane radius here is a = 3.0
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Apex Displacement -vs- Pressure
[ T = 0 (zero net ilntn'nsic stress), Dliameter =6.0in
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Figure 3: Comparisons of wy versus p, using equation (3.63), to results using the finite element method.
These plots are for ' = 0 (hence also 7 = 7 = 0), i.e., for zero net residual stress in the coated membrane
laminate.

inches = 0.0762 m, the coating and membrane thicknesses are hy = h, = 1 pm and hy = h, = 20 um,
respectively, with Ec = 44.0 GPa and E, = 2.2 GPa. The two Poisson’s ratios have been assumed the same,
Le., vo = v; = 0.4. FE results for both pinned edge and clamped edge boundary conditions (see §4.2.3 for
the definition of pinned edge boundary conditions), treating the coated membrane as a “plate”, are also
shown in Figure 3. It is clear from these plots that the results of the theory under consideration resemble
more closely the FE results for a plate with a pinned boundary rather than one with a clamped boundary.
We interpret this to mean that the coated membrane behaves more like a plate than a “true membrane”, i.e.,
the bending stiffness of the coated membrane is large enough in this example that a geometrically nonlinear
plate theory is probably necessary to obtain agreement with the FE clamped edge results.

Returning to the subject of bulging tests, we recall that in such tests the apex deflection (“bulge”) wy is
measured as the pressure load p is varied. The analysis of data obtained in this way often relies on a formula
proposed by Beams [8] (see, for example, [9, p. 254], cited in the recent book by Ohring [10, p. 716]). Beams
cites for this formula apparently unpublished work by Cabrera. The derivation of the formula is not given
in [8], and it was used there and in [9, 11] only to analyze thin films of a single material, not a laminate.
A similar formula was given in [12] for applications to square and rectangular films of a single material.
These formulas seem to be intended for applications to “true membranes”, since they do not include bending

stiffness. The formula given by Beams [8], expressed in our notation (Beams’ application was to a single
thin film of gold), is:

——) , equation (2) of [8], (3.64)




where Ty is referred to as the “tension” by Beams, but has units of stress and corresponds to our N /h. Since
Poisson’s ratio for gold is approximately 0.4, for Beams’ application equation (3.64) can be rewritten as

p-4———N+444Eh N = hT,. (3.65)

For a single material, in which case E = E, the two terms of the Beams/Cabrera formula follow as an
approzimation of our theory by investigating the apex deflection as a function of pressure in the two limiting
cases of zero residual stress, and large residual stress. For zero residual stress (M = 0), equation (3.63)
applies, where ¢ is a function of Poisson’s ratio only, which we find to have the value 0.626 for v = 0.4, i.e.,

pa\1i/3 _ _
wo = 0.626a (Eh) . N=0, v=04. (3.66)
On the other hand, for large values of N, i.e., of 7, the coeflicient by in (3.60) is found to be large, so that
co &~ 1/bo. In this case it also follows from (3.55) that by ~ 7, hence ¢; ~ 1/7 and from (3.63)
1/3
Wo ~ a—.
T

But from (3.45), 7 = 47/¢*/3, which yields

wo & — —12— N large (3.67)
0 ~ 4Tq = 4Np7 ge, .
where we used (3.45) again to replace g and 7. Thus, for large N, wy is linear with pressure p. Equations

(3.67) and (3.66) yield two expressions for the pressure as a function of wp:

p~4 % N, N large, . (3.68)

and

= 408 En8 N =0, v=o04, (3.69)

4 ?
respectively. The Beams/Cabrera formula (3.65) is obtained as a simple linear combination of these expres-

sions for p; and pa, viz., a4
Tos P2 (3.70)

Since this formula is an approximation, it is expected not to be as accurate in determining the intrinsic stress
as one determined from the exact theory. A more systematic derivation of Beams/Cabrera-like formulae using
perturbation techniques will be given later in §5.2. '

Our algorithm for using the theory to compute the coatmg stress S, in a single-layer coating from bulge
test data is the following. For a given pressure p, a measurement of the apex displacement wp is made. With
p we can compute g from (3.33), and then from (3.63) we have the corresponding value of co:

=pn +

= Yo
= - pryER (3.71)
For this value of ¢p, we now determine by by solving, using some numerical method, equation (3.60), i.e
o0
co — b2 gg;; =0, (3.72)

n=1 0

rather than (3.55). This, in effect, gives us by as a function of co, i.e., bo(co). Substitution of this value of by
in (3.55) then gives 7 as a function of v4 and by (or, equivalently, co):
1 o0
7 =bh —_— 1- bor | - .
T(co,va) = bo |1 + (1—uA)Z(2”+ va) ban (3.73)

n=1
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Figure 4: T versus ¢y for five values of v4.

We assume that the geometrical and material properties of the coating and membrane are known, so that
va can be calculated from its definition (3.33), and then (3.73) allows us to compute T(co) for this fixed
value of v4. As the final step, the computed value of 7 is used in definitions (3.45) and (3.33) to obtain A/,
from which S, follows according to definition (1.1), assuming that the membrane substrate residual stress
S, is known. Figure 4 shows the graphs of 7(cy) versus ¢o for five different values of v4 (note that the curve
for v4 = 0.3, restricted to the interval 0.1 < ¢y < 0.653, is the inverse of the graph shown in Figure 6 of
Campbell [6]).

In closing this Section, we note that in order to include the bending stiffness of the material, Bonnotte,
et al [13] appended an additional term to a Beams /Cabrera-like formula. They then used FE analysis to
determine two fitting constants appearing in their formula. This model was applied later by Bahr, et al [14]

to a square, five-layer laminate material, by simply replacing E and v in the Bonnotte, et al formula with
thickness-weighted “composite” values, i.e.,

5 5
E=3) hE/h v=3 hwlh, h=3 h (3.74)
i=1 i=1

=1

These composite values appear in their equation (1) only in the combination E /(1 = v?), which they refer
to as the composite “biaxial modulus”, denoted by Yp in Bonnotte, et al [13], and by Q in our definition
(1.8). It should be noted in this regard that in other recent literature, e.g., {15, 16, 17], the term “biaxial
modulus” is used instead for the quantity E/(1 — v) (a convention which we shall adopt later, denoting it
by B). For a Poisson’s ratio of 0.4 the first definition gives a value of 1.19 E, while the second gives a value
of 1.67 E, roughly 40% higher than the first. In Table 1 we use the Bahr, et al [14] data to compare values

16




Table 1: Comparison of thickness-weighted averages with values occurring in the geometrically nonlinear
membrane laminate theory.

E (GPa) v E/(1-v?) (GPa)
Thickness-weighted averages 145.6 0.280 158.0
Membrane laminate theory 145.8 0.283 158.5

computed using the thickness-weighted averages in (3.74) with those computed using the definitions (3.33)
occurring in the geometrically nonlinear membrane laminate theory. For all practical purposes, the values
obtained by the two different methods are the same in this particular example.

Results obtained with the formulas used in [13] and [14] are probably not comparable to results using our
theory, as their formulas were determined empirically by fitting to data obtained on rectangular specimens,
rather than circular ones. However, ignoring this important distinction for the moment, and using the data
given in [14], we compare in Figure 5 the results of the theory with the results shown in Figure 1 of [14].
Note that their data is for a multilayer consisting of four coating material layers placed on a (fifth) silicon

Pressure -vs- Apex Displacement
S, =0,= 117 MPa in each coating layer i, Diameter = 1.45 mm

T T T T T
| I [ | 1

1.4e+05

1.2e+05

~— Membrane laminate theory
le+05 ---- Equation (1) of Bahr, et al / —

80000 —

Pressure p (Pa)

60000 —

40000 -

20000

———————— ] | l ]
0 1 1 AL 1
0 Se-06 1e-05 1.5e-05 2e-05 2.5e-05 3e-05

Apex Displacement w, (m)

Figure 5: Comparison of membrane laminate theory, equation (3.63), with curve generated by equation (1)
of Bahr, et al [14], assuming S; = o, = 117 MPa in each coating layer i.

substrate layer, so that the constants of our theory, defined in equations (1.1)—(1.7), involve N = 5 layers.
For the theory, we took the radius to be a = 0.725 mm, half that of the side length 1.45 mm of their square
specimens (in [14] this side length is also denoted by a, which should not be confused with our radius a).
In order to match the final point (3 x 10™% m, 1.4 x 10° Pa) of their Figure 1 using their equation (1), we
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had to take their residual stress o, to be 117 MPa, although they mention the range to be from 90 MPa
to 110 MPa. Our theoretical curve was generated using equation (3.63), assuming that S; = 117 MPa for
each layer i of the four-layer coating, and S5 = 0 in the substrate. The resulting comparison is reminiscent
of our comparison of the theory and FE analysis in Figure 3, i.e., for a given pressure the theory generally
overestimates the corresponding apex deflection.

4 Geometrically Linear Shell Laminate Problems
For shell laminates, the leading order displacement components are given by the Kirchhoff-Love expressions

w
UR=u—Zw,n, Ue=’U—Z?e,
where u, v, and w are functions of R and © only. For a geometrically linear shell laminate, the strain com-

ponents depend linearly on these components and their partial derivatives, according to equations (10.23.1)-
(10.28.1) of Reference [1]:

Uz = w, (4.1)

1 ue—-v T pwe We WRe\| _ o
€re = 5 U R + -—R— + T + 27 (-}? — _.R_) = €pg — ZkRe, (42)
€RR = UR + T'rw R — Zwrr = 5 — Z kg, (4.3)
= vetu S (WR , Wee)_ o _
€0 = R Z( R + R? ) = €go Zkoo, (4.4)
where the Z-independent strains and curvatures are given by
1 ue—v I pw w w
0 — 0 LRW,© _ ,© RO
€po = 5 (U,R-*' ) + ¥ ) , kre = —722— + '_R-‘-, (45)
€hr = ur + T ruR, krr = w,rnr, (4.6)
0o _Yetu — WR  Wee
€og = R 3 kee = —}2— + R? (47)

The stress resultants and couples for a shell laminate are given by equations (10.39.1)~(10.44.1) of Refer-
ence [1]:

Np =N + Aegp + Ay Qg + Bkrr + B, koo, (4.8)
Nre = Ae €}g + Bo kgo, (4.9)

No =N + A, hp + Aedg + B, krr + Bkeo, (4.10)
Mp = ~-M - Bepp — B,edo — Dkrgr — D, koo, (4.11)
Mpe = —Bg €%g — Do kro, (4.12)

Mo = ~M - B, &4y, — Bedg ~ D, krr — Dkoo, (4.13)
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but note that the Z-independent strains are now replaced by (4.5)-(4.7) of the present Section. The equi-
librium equations for a shell laminate are equations (10.36.1)-(10.38.1) of Reference [1], which are similar to
those for a membrane, but contain additional terms involving the stress couples:

(RNg) p — Ne + Nree = 0, (4.14)

(R*Nge) j, + RNeo =0, | ~ (4.15)
and

[RT.R N& + (RMg) o ~ Mo + Mros) .
1

1
R? =Meoe| +(p+%g)R=0. (416)

(RzMRe)’R + R o

+ [T,RNRG +

4.1 Reduction to an Axisymmetric System

We specialize now to the case of an axisymmetric system by assuming that none of the variables depend on
the angular coordinate ©. Thus, all terms involving partial derivatives with respect to © vanish, leaving the
following simplified set of strain-displacement relations:

1 v '
EORQ = 5 (’U,R - R) ) kR@ = O, (417)
6(1)2R =upr + ' pwr, krr = W RR, (4.18)

u W.R
do = R’ kee = R’ (4.19)
and equilibrium equations:

(RNR) p — Ne = 0, (4.20)
(R*Nro) 5 = 0, (4.21)
[RT.R Nk + (RMR) z = Mo| _+ (p+ 709) R = 0. (4.22)

As in §3, c¢f. equations (3.16) and (3.17), equations (4.21) and (4.22) can be integrated immediately. And,
in order for the results to be regular at R = 0, we must again set the integration constants to zero, which
yields the results

NR@ = 0, for all R. ’ (4.23)

RT pNp + (RMg) g — Mo + (p + Y0 9) = 0. (4.24)

2
2
Since kre = 0, we have from (4.9) and (4.23) that €% = 0 (since A is, in general, nonzero). Thus, as in
§3, it follows that v(R) = vp R, where vp is an arbitrary integration constant; if v(Rp) = 0 for any non-zero
value Ry of R, then v(R) = 0 for all R. Since both €%g = 0 and kre = 0, it follows from (4.12) that

Mpge = 0, for all R. . (4.25)
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The remaining system of equations to be solved is then

RNrpr + Np — No = 0, (4.26)
R2
RMR,R+MR~M9+RF,RNR+(P+709)—2- =0, (4.27)
where
Nr =N+ Adr + Ay + Bkrr + B, koo, (4.28)
Ng =N + A,,e(}m + AE%G + B, kgp + Bkee, (4.29)
Mg = -M ~ By — B,edg — Dkpr — D, koo, (4.30)
Mg = -M — B, €4y — Bedg — D, kpr — Dkgo, (4.31)
and
€hr = ur + L rwr, krr = w,rnr, (4.32)
o _u _ WR
¢ee = 7> koo i (4.33)

Next, as in §3.2, we transform these equations to dimensionless forms by introducing a dimensionless
coordinate p, dimensionless displacement components % and , and a dimensionless initially curved reference
surface I, defined by

= E, u= 2, = 2, r= E, (4.34)
a a a a
together with the following dimensionless constants:
A, —~_ A N M (P + %g9)a
= —, E==(1-v}, = =, = =, = 4.35
A=4 RU-v), TEgn w=ge Eh (4.35)
and four dimensionless dependent variables z,, zg, Yr, and yg defined by
____NR—N z =N9—N =MR+M =M9+M (436)
r = 'E h ) g = Eh ) Yr = F ha ) Yo = E ha - .
We also introduce dimensionless curvatures &, and x, defined by
Kr = ak;m = ﬁ’pp Ky = ak@@ = ~—p’£, (4.37)
and four new dimensionless constants
B B D D
b= =—o, b, = =——, d= =——0, d, = =—*—, 4.38
Eha Eha Eha? Eha? (4.38)

noting that the strain components are already dimensionless, and have the following forms in terms of the
dimensionless variables defined above:

(4.39)

s
k)]
S

m
0]
o

I

R ES)




The strain components must satisfy a modified form of the compatibility condition (3.40), viz.,
pede, = €rr — €0 — LoD, (4.40)
and there is an additional compatibility condition involving the dimensionless curvatures:
PKep = Kr — Ka, (4.41)

which is easily derived from the definitions (4.37).
Substituting these dimensionless quantities into the equilibrium equations (4.26) and (4.27), we reduce
them to

Trp + i—(z, —-z9) =0, (4.42)
‘and 1
Yoo + 5 (4 —w0) + T (7 4 2) + 45 =0, (4.43)
respectively. The constitutive relations (4.28)—(4.31) take the forms
1 .
o = —— (chr + vacde) + br + by Ko, (4.44)
1-vg
1
T (vaekrn + o) + by kr + by, (4.45)
— Vi
yr = —belp — b, Qg — dir — dy Ky, (4.46)
Yo = —b,ehp — bede — dy Ky — dkg. (4.47)

Equations (4.44) and (4.45) are easily solved for €%y and €3¢ in terms of the z’s and &’s:

€hr = Tr — VATy) — Bhr — Bu ke, (4.48)

6%9 =Ty — VAL, — ,Bu Ky — ﬂ/ia, : (449)
where we have introduced two new constants:
B=b-—vaby, By = b, —va b. (4.50)

We note here that the dimensionless radial displacement component can be expressed in terms of z, and zy,
and k, and kg (which themselves depend only on derivatives of @), by combining (4.39) and (4.49) to obtain

(p) = p (z9 — vazr — Bukr — BKg). (4.51)

Taking the derivative with respect to p of (4.49) and substituting the result, together with (4.48) and
(4.49), in the e-compatibility relation (4.40), we obtain

~

p (zG,p — VAZrp — By Krp — ﬁfie,p) = (1 + VA) (zr - 11"6) - (B - .Bv) (RT - "'30) - f,p W,p-

In this expression, we use (4.41) to replace (k, — kg), and (4.42) to replace (z, — ), which yields the
following result for the compatibility condition:

pler + 2o — By (ke + 8e)], + T o, = 0. (4.52)
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Next, we substitute (4.48) and (4.49) in (4.46) and (4.47) to obtain

Yr = "ﬂxr - ﬂu Ty — 6’91‘ -4, Ky, (453)

Yo = —Bvzr — By — by Ky — d kg, (454)

where we introduce another pair of constants:

6= d - bﬂ - bl/ﬂlia 61/ = dv - bﬂv - buﬁ (4~55)
The derivative of y, with respect to p yields from (4.53):

Yrp = —ﬁmr,p - B Zop — ‘snr,p -0, Kg,p- (4'56)
From equations (4.53), (4.54), and (4.56) we obtain

Yrp + %(yr - yﬂl) = _ﬂzr,p - B Tgp — 6’ir,p -0, Kg,p
- %[(ﬂ = B.) (& — 28) + (6= 8,) (ks — ko).

In this expression, we again use (4.41) to replace (k. — kg), and (4.42) to replace (z, — z4), which simplifies
it to

1
Yrp + ;(yr —y) = =B (zr + 20) , ~ 8 (ke + Kg) - (4.57)
Substitution of (4.57) into (4.43) yields the following form of the axial equilibrium equation:

P _
5 =
Equation (4.42) can be used to eliminate z4 in (4.52) and (4.58), and the problem we are left with is to
solve the coupled differential equations (4.52) and (4.58) for @ and z,. The radial displacement  is then
determined from (4.51).

Equations (4.52) and (4.58) differ in form from those for a shell of a single material only by the terms
involving the coefficient B,. From its definition, given in (4.50), we note that

B
=b, —vab = = VB — V4), 4.59
Bo = b, — vy o (vB — va) (4.59)
i.e., B, is proportional to the difference in extensional and coupling Poisson’s ratios. This expression can be
expanded, yielding

=By (zr + 74) , — 0 (K + Ky ), t f,,, (r+2z)+g¢g 0. (4.58)

1

b= TFha

(AB, - A, B)

N

—

M=

hihjhe [Qi (Qjv; — Qrvi) — Qivi (Q; — Q)]

N =

1
AEha

i=1 4=

—

k=j+1

o,

which can be manipulated to

] Q N-IN-1 N
ﬂu:AEh {EZ Z hihjthiQk (Vi"Vk)
a i=1 j=1k=j+1
L (4.60)
hy QN
T ;=1k;j+1hjhk [Qj(”j‘”N)‘Qk,(”k—"N)]}'
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This constant is seen to be a sum of terms, each of which depends upon differences in the Poisson’s ratios of
the various material layers. For a single-layer coating of the membrane (hence N = 2 layers total), we have
simply -

8, = 'E'ij%caQi (ve — vs), (4.61)
where i = j = 1 = c in the coating, and k¥ = 2 = N = s in the membrane substrate. The total thickness
h = h. + h, disappears from the expression, as it is a common factor in both numerator and denominator.
Thus, if the two materials have the same Poisson’s ratio, 8, vanishes and the governing equations simplify
considerably (this simplifying assumption was made, for example, by Wittrick [18] in his work on the stability
of bimetallic thermostats).

4.2 General Solution for an Initially Parabolic Coated Membrane Laminate
Here, we consider an initially parabolic coated membrane, defined by equation (1.19), viz.,

I(R) = 5 (@ - BY), | (4.62)

The dimensionless form of this equation can be written as
a K
L(p) = 3 (1 - 4), (4.63)

where k, is a dimensionless parameter defined by

a
Ko = QK = 3 (4.64)
From (4.63) we obtain
Tp,=—kKop, (4.65)
which can be substituted in the fundamental equations (4.52) and (4.58) to write them as
[zr + 26 — Bu (Kr + Kp)] , — KoW, = 0, (4.66)
~By (@r + 30) , — 0 (Kr + Kg) , = Kop (r + z) + qg = 0. (4.67)

This pair of equations can be uncoupled to obtain a single differential equation for  as follows. Substituting
for (z, + z4) , from (4.66) into (4.67) yields

-A (nr+n9),p—ﬂ,,h:o{u‘,,,—fcop(r+zr)+qg =0, : (4.68)

where we have introduced a new constant A defined by _
A=d4+p=d-(1-vibh (4.69)

Solving (4.68) for z, yields (for k, # 0)

Kr + K T
R § NCEI2 VY wm
Ko p 2
from which ' AT ) ( )
Kr + Kp Ky + Ko w w
‘TT‘,p = ___Kl_o_ [ P PP p2 1P:| _ BV ( PP pazp) . (471)
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From equations (4.42), (4.70), and (4.71) we have

Ty = pTrp + T = —T — ’% (Kr + 8o) ,, = By + 2:,’ (4.72)
hence (4.70) and (4.72) yield
Tr + T = —27 + ;gq—o - % (kr + no),pp + (—K%no)i] - B (@,pp %) (4.73)
We next observe that equation (4.66) can be integrated immediately to obtain
Zr + 29 = B, (Kr + Kg) + Ko + C3, (4.74)

where Cj is an arbitrary integration constant. Substituting from (4.73) into (4.74) yields

(kr + Kg ),,,]

o~

A N N .
= [(Kr + Kg),, + + B, (w,pp + %ﬂ + K + rco) + KW+ 2T — ni + C3 = 0. (4.75)
(]

(7]

Recalling the definition of the p-dependent part of the Laplacian operator in cylindrical coordinates, viz.,

V20 = @ ,, + 7;3, (4.76)
we have N
Ke + Ko = B,y + ﬂpﬂ = V2§, (4.77)
and also (v22)
w
V2 (V2B) = V4D = (V2B)  + —28, (4.78)
PP p
These observations allow us to write equation (4.75) more compactly as
4. Ko oo~ , Ko 1
Vw+2ﬂ,,XVw+Z-w=K(q—2'rfco-—03no). (4.79)

The complete solution of the linear differential equation (4.79) has the form W(R) = W(R) + Wp(R), where
Wr(R) is the general solution of the homogeneous equation
K

A

and @,(R) is a particular solution of (4.79). A suitable particular solution in this case is the constant function

Vidn + 28, % V2B, + =2 By, = 0, (4.80)

. 1
Wp(R) = ) g - 27Ky — C3k,), (4.81)

which involves the as yet unknown integration constant C3. The homogeneous fourth-order linear differential
equation (4.80) has at most four linearly independent solutions. We note that if ¥(p) is an eigenfunction of
the p-dependent Laplacian operator defined by (4.76), corresponding to an eigenvalue —m?, i.e., if

V2 = —m?y, (4.82)
then V4y = m44, hence 1 is also a solution of (4.80) if m satisfies the fourth-degree polynomial equation

m* + 2kZm? + k! =0, , (4.83)
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where we have introduced two constants ks and k; defined by

n2

Ko _ 0
= -B % k= -2, (4.84)

and remark that B, can be either positive or negative, while A is always positive. The four solutions of

(4.83) are easily found to be ,
m = :l:\/—k% + /Kt — kb . (4.85)

The forms of these solutions to be used depends on the relation between k% and ki. We find for typical
parameter values of the material constants and the geometry that kf > k3, so that (4.85) may be written as

m = :}:\/——k2 iiﬁf +k2) (k2 - kD) . (4.86)

This can be put into a more convenient form by introducing two new (real) constants defined by

k=4 —(k2 +k2), €= \/ - k2), (4.87)

which can be inverted to yiéld k% and k? in terms of € and k:
B =kK-¢&  k=kK+. (4.88)
The complex eigenvalues (4.86) take the following simple forms in terms of € and k:
m = + (e £ ik). (4.89)
The four distinct eigenvalues m;, j = 1,2, 3,4, are thus given by

my = € + ik,
ms = € — itk = m],

4.90
mg = — (e + ik) = —my, (4.90)
my = — (e — ik) = mj = —my = —my,
where an asterisk denotes complex conjugation. These correspond to eigenfunctions 1;(p) satisfying
Vi = —miy;,  §o=1,2,3,4. (4.91)

Substituting for the Laplacian operator, we obtain the following second-order differential equation for each 1);:
/ ‘
¥ + 7’ + mip; = 0. (4.92)

Introducing new independent (complex) variables {; = m; p, the jth second-order equation can be written
as

where a prime always denotes the derivative of a function with respect to its argument, in this case §;, and
v;(&;) = ;(m; p). Equation (4.93) is Bessel’s equation of zero order, whose solution regular at the origin
is the zero-order Bessel function Jo(£;). The general solution of our homogeneous equation (4.80) is then a
linear combination of the four eigenfunctions Jo(¢;):

@n(p) = CrJo(mp) + Cado(map) + CaJo(msp) + Cado(map),

% % % - (4.94)
= C1Jo(map) + Codo(mip) + C3Jo(—m1p) +CsJo(—mip),
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where the arbitrary constants 53- are, in general, complex. Using the fact that Jj is even, ie., Jo(=2) = Jo(z),
this homogeneous solution reduces to

~

@h(p) = CrJo(myp) + Cado(m?p), (4.95)

where C; = € + C3 and Cp = G + € are new arbitrary complex constants. From its definition in (4.90)
we can write the complex number m; in polar form as

my =€+ ik = Ve + k2 e =k el 6, = tan~! (E), (4.96)

€

)

where we also used the second equation of (4.88). Equation (4.95) is thus equivalent to
’lﬁh(p) = -C-l Jo (Cwl kl p) + 62 J()(t‘imwl kl p). (497)

Now, the ratio k/e defining the angle 6; can be rewritten using (4.87) and (4.84) as

k_ [148,4-12 ;
€ —_ T’W. (4-98)
We find that for the material and geometric parameters of interest here, it is in fact true that |3, A~1/2| is

always much less than 1 (in a typical case, this product is on the order of 1 x 10-8 ). We thus approximate

k

T
€ ~ 1, $ 01 ~ Z, (4.99)

which brings (4.97) to the form
Dh(p) = CiJo(€™/*k1p) + Cado(e™""/*ky p). (4.100)

This can be written in terms of Kelvin’s ber and bei functions (see [19, pp. 379-383), for details of the
properties of the Kelvin functions) as

@n(p) = Ci [ber(k1p) + ibei(kip)] + Ca [ber(ky p) — i bei(k; p)], (4.101)

Since Kelvin’s functions are real-valued, and @, (p) must be real, it follows that the complex constants must
in fact be complex conjugates: C, = 5;. Thus, the general solution for @(p) takes the form

. . N . 1
W(p) = Wh(p) + Wp(p) = Cyiber(k;p) + Csbei(k1p) + Pl (¢ — 27k, — C3K,), (4.102)

where C; = C; + 5; and Cy, = i(ﬁl - E‘_I) are now arbitrary real constants to be determined from the
boundary conditions.

The dimensionless radial displacement @ defined by (4.51) can be expressed in terms of @ and its deriva-
tives as follows. First, we use (4.70) and (4.72) to replace z, and z4 in (4.51), yielding

V25 . .
up) = p {<2Zo - T) (1 —wy) - % (VQ{E)M - vg4 ( w)”’} - B (212,‘,,, — vy ff_ﬁ) - ﬂi"p‘_ﬂ}'

p p
From (4.79) and (4.78) we obtain the following expression for (V20) oo

(V%D),
p

2
Ko

A

X

T—A-2+—Z-—Cs

V2% ,p = — b — 2

2 —2[3.,%V21D—
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which is substituted for (V2@ in the previous equation to obtain the desired result, viz.,
0P P

o) = |[r--L 2 (v
u(p) = K‘r 2%) 1+ va) +C'3] p+ (1+ va) P (V w)’p
+ 8 @+ wva) - BlDy + kopW. (4103)
To get the derivatives of @W(p) appearing in (4.103), in terms of Kelvin functions, we note that
@,,(p) = k1 [Ciber'(k1p) + Cabei'(k1p)], (4.104)

@ pp(p) = k2 [Ciber" (k1p) + Cabei” (k1p)], (4.105)

where the prime on the Kelvin functions here denotes a derivative with respect to the function argument z =
kyp. From [19], Equations (9.9.16),

ber'(z) = “lﬁ[ bers (z) + beis ()] , (4.106)

bei'(z) = 71:2:[—ber1(a:) + beir (z)], (4.107)
hence

ber(z) = %[ ber! (z) + beil (z)] , (4.108)

bei’(z) = % [—ber (z) + beij(z)], (4.109)

For the derivatives of the Kelvin functions of order 1, we have from Equations (9.9.14) of [19] the following
identities:

ber)(z) = ? [bers (x) + beis () — ber(z) — bei(#)], (4.110)
bei, () = -‘2—5 [bei () — bers () — bei(z) + ber(2)], (4.111)
and

bera(z) = —‘/?i [ber, (z) — beiy ()] - ber(z), (4.112)
beig(z) = ——?[beil(z) + ber; (2)] — bei(z). (4.113)

Applying the last four identities to (4.108) and (4.109) yields
ber"(z) = —-—i—ber'(z) ~ bei(z), (4.114)
bei” (z) = —%bei’(m) + ber(z). | (4.115)

Substituting these results in (4.105), we obtain

. k ' . .
D, pp (p) ——’} [Clber (k1) + Czbell(klp)] + k% [—C1 bei(kyp) + Ca ber(k;p)] (4.116)

~

- '—”;’i + k2 [=Ci bei(k1p) + Cpber(kip)] (4.117)
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where we used (4.104) in (4.116) to get (4.117), and recall that z = k; p. From (4.117) follows a useful form
of the p-dependent Laplacian operator acting on @:

&)
>

V25 = W,pp + = k? [-Cibei(ky p) + Caber(k p)]. (4.118)

S|

The derivative of the last expression, which is required in (4.103), can be written as
(V2@),p = ’(3:13 [—Cl bei'(klp) + Cg ber'(klp)] . (4.119)

Substituting (4.118), (4.119), and (4.102) in (4.103) yields the general solution for u(p) in terms of Kelvin
functions (the terms containing C3 conveniently add to zero):

U(p) = uk} [—~Cibei'(k1p) + Cober'(k1p) | + uz ky [Ciber'(kip) + Cobei'(k1p) ]

4.120
+ Ko p [Ciber(kip) + Cobei(kip)] — (1 — vy) (’r - -2%> P, ( )
o
where we have introduced new constants u; and u, defined by

A
u = (1 4+vy) — (4.121)

Ko
ug = B, (2 4+ va) - B. (4.122)

Before considering specific boundary conditions, we note that for any such conditions that include a

specification @(pg) = 0 at some point p = py (where py is typically either 0 or 1), we will have from (4.102)
a condition of the form:

1
0= C1ber(k1p0) + Cgbei(klpo) + ;5 (q — 27K, — C3 K, ), (4.123)

which can be used to replace the constant particular solution in (4.102). The solution for W(p) is thus given,
after applying a boundary condition of this type, by

w(p) = Cy [ber(kip) — ber(kipo)] + C [bei(kip) — bei(kipo)]. (4.124)

4.2.1 Computing the Kelvin Functions

For arguments of the Kelvin functions satisfying k;p > 8 we use the asymptotic forms of the Kelvin functions
and their first derivatives, derivable from material given in Abramowitz and Stegun [19] (in particular, their
Equations (9.10.1) and (9.10.2) on p. 381, together with Equations (9.9.16) on p. 380), viz.,

ber(kyp) ~ F(kip) cos (k1 p/V2 - ﬂ/s), (4.125)
bei(kp) ~ F(k1p) sin (k1 p/V2 - 7r/8), (4.126)
ber'(k1p) ~ F(k1p) cos (kl p/V2 + 7r/8), (4.127)
bei'(kyp) ~ F(kyp) sin (k1 p/VZ + 7r/8), (4.128)

noting that each approximation contains a common multiplicative factor

exp (k1p/V2)

Flkip) = Vi (4.129)
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The sometimes large exponential factor F(k; p) may be alternately removed and inserted in constants (defined
later) associated with various boundary value problems, in such a way that it will ‘divide out’, to avoid
overflow problems in the computation.

For —8 < k1p < 8, we use the polynomial approximations given in [19, §9.11, p. 384], i.e.,

ber(kip) = 1.0 — 64.02* + 113.777782® — 32.36346z'2
+ 2.64191z%¢ — 0.08350z%° + 0.00123z** — 0.00001z%%, (4.130)

bei(kyp) = 16.0z2 — 113.777782° + 72.81778z'° — 10.56766z
+ 0.52186z'® — 0.01104z* + 0.00011z%6, (4.131)

ber'(k1p) = 8z (—4.0z° + 14.222222° — 6.06815z'° + 0.66048z™ — 0.02609z'® + 0.00046z°), (4.132)

bei' (k1p) = 8z (0.5 — 10.66667z* + 11.377782® — 2.31167z"2
+1.14677'6 — 0.003792%° + 0.00005z%*), (4.133)

where £ = k;p/8 on the right-hand sides of these formulas.

4.2.2 Free Edge, Simply-Supported at the Center

The first boundary value problem we consider is that of an initially parabolic coated membrane laminate
with a free edge, requiring that Ng(a) = Mg(a) = 0, and simply-supported at its center, i.e., w(0) = 0. In

terms of our dimensionless quantities these translate to (1) = —7, y-(1) = p, and @(0) = 0, respectively.
The boundary condition @(0) = 0 yields from (4.124) (with po =0 ):
’l’l}(p) = [ber(klp) - 1] + C’zbei(klp), (4134)

since ber(0) = 1 and bei(0) = 0. The remaining two boundary conditions, (1) = —7 and y,(1) = u, provide
two linear algebraic equations to be solved for the unknown coefficients C; and C3. The construction of
these equations involves computing the strains and curvatures defined in (4.39) and (4.37), viz.,

~ . n ~ ,
g = U, — kopD,p, Qe = > Kr = W,pp, Kg = 7”. (4.135)
where we replaced f,p = —Kgp in the first equation of (4.135). All the relevant quantities have been

computed, except for 4 ,. From (4.120) we obtain

i, = u kt [—C’lbei"(klp) + Cober” (klp)] + up k2 [C’lber"(klp) + Cybei” (klp)]

+ KopW,, + Ko [Ciber(kip) + Cabei(kip)] — (1 — va) (T - %) ,
or, using (4.114) and (4.115) to eliminate the second derivatives of the Kelvin functions:
8, = ulkT? [Cibei (k1p) — Caber' (k1p)] — uiki [Ciber(k1p) + Cobei(kip)]
- uz% [Ciber’(k1p) + Cabei (k1p)] — uzki [Cibei(kip) — Cober(kip)] (4.136)

+ kopi,, + ko [Ciber(kip) + Cabei(kip)] — (1 — va) (T - 2i ) )
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Using these results, the strains and curvatures are given by
0 k? ! ! 4 .
g = ul—p— [C1ibei' (k1 p) — Cyber (k1p)] — wiki [Ciber(k,p) + Csbei(k; p) ]
k
- uz?1 [Ciber!(k1p) + Cabei' (k1p)] — uok? [Cibei(ky p) — Caber(ki1p)]

+ Ko [Ciber(kip) + Cobei(kip)] — (1 — vy) ('r - EZ—) , (4.137)

k3
o = ulj [~Cibei (k1 p) + Caber'(kyp)] + 'ug% [Ciber’ (k1 p) + Cabei' (k1 p)]

+ ko [Ciber(kip) + Csbei(kip)] — (1 — vy) (7‘ - EZ_) , (4.138)

k
Ky = ——pi [Ciber’ (k1 p) + Cobei' (k1p)] + kf [—Cibei(kip) + Cober(kyp)], (4.139)

kg = %[C’lber'(klp) + Cybei (k)] . (4.140)

These expressions must be evaluated at p = 1, and then substituted in the constitutive relations (4.44) and
(4.46) with z, = —7 and y, = p, i.e.,

€hr + vaedo + (1-v3) (br, + b, k) + (1-v2) 7 = 0. (4.141)

berp + byede + drr + dukg + p = 0, (4.142)

The resulting system of two equations for Cy and C, can be written as

s1C1 + 812C + (1-v2) E‘i—o =0, (4.143)
521C1 + 522C + (B + B,) 210 tu-B+B)T=0, (4.144)
whose solutions are easily found to be
6=~ {0-v0) ou ~ 845 ) g~ malk = (54571}, (4.145)
C = '%T {[(1 - uj)@zl - (B+8,) s11] 2420 —sufp - (B+8) T]}; (4.146)

where |s| = 511822 — 81282; is the determinant of the 2 x 2 coefficient matrix. The matrix elements are rather
complicated expressions involving the Kelvin functions and material /geometrical parameters. They can be
reduced to the following forms:

si = [ko (1+v4) ~ kui] ber(ks) — k2 [uz + b (1-2)] bei(ky)
+ kjuy (1 vg4) bei'(ky) + k(1= va) (B, — B — up) ber'(ky), (4.147)

= [ko (1+v4) = Kfw] bei(k;) + k2 [uz + b (1 - v2)] ber(ky)
— Kuy (1-va) ber'(ky) + ky(1=va) (B, — B — uz) bei'(k;), (4.148)
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[£0 (b+by) — bkius] ber(ky) — kf(d + bus) bei(k:)
+ K3uy (b—b,) bei' (k1) — ki [d—dy + (b—by) ug] ber'(k1), (4.149)

S21

822 = [ko (b+by) — bkiuy] bei(ky) + kF(d + bus) ber (k)
— K3uy (b—by) ber' (k1) — ki [d—dy + (b— by) up] bei'(k1). (4.150)

In the range k;p > 8 the asymptotic approximations (4.125)-(4.128) of the Kelvin functions contain a
common exponential factor F(k; p), having the value F(k;) at the edge p = 1. Here, we see that in the same
range F'(k;) is also a common factor of each matrix element s;;, hence its square is a factor of the determinant
|s|. It then follows that the integration constants Cy and Cs are proportional to the reciprocal of F'(k1). Since
both % and % contain products of C; and Cs with the Kelvin functions, we can factor from each occurrence of
these functions a term of the form F(ky p), so that a common ratio F(k1p)/F (k1) = exp [(k1/V2)(p — 1)]/\/P
can be factored from these terms. Thus, for values of k;p > 8, we replace the Kelvin functions by the
trigonometric parts of their asymptotic expansions, and factor out this common ratio wherever possible to
avoid computational problems that may occur for large values of the exponential function.

It is rather impractical to consider a pressure difference between the faces of a coated membrane laminate
satisfying free edge boundary conditions. We thus set the pressure difference p = 0, hence the dimensionless
constant g depends only on the gravitational field. Ignoring the effects of gravity, we set ¢ = 0. The solutions
(4.145) and (4.146) for C1 and C; are then observed to contain the common factor

b= (B+B)T, (4.151)

and this is the sole dependence of C; and C; on the intrinsic stress loads S; (occurring in p and 7). We can
thus write the solutions in (4.134) and (4.120) for @W(p) and ©(p) (with ¢=10) as

W(p) = [u — (B+By) 7] W(p), (4.152)

u(p) = [k — (B+By) 7l (o) — 7 (1 - va) p, (4.153)

where @(p) and %(p) are functions that do not depend on the intrinsic stress loads. From (4.152) we see
that the axial displacement will vanish if we can choose the intrinsic stress loads and geometrical/material
parameters to satisfy p — (8+ B,) 7 = 0. In order for the radial displacement to vanish as well, we must
also choose them such that 7 = 0. This, in turn, requires x4 = 0 for the first condition to be satisfied. Thus,
for free edge boundary conditions, and ignoring the effects of gravity, the necessary and sufficient conditions
for there to be no displacement from the initial paraboloidal shape upon removal from the mold are simply

=0 and p=0 = N =0 and M =0, (4.154)

that is, the net intrinsic stress resultant and net intrinsic stress couple must both be zero. Note that for a
single coating on the membrane, the condition g — (8+ 8,) 7 = 0, which is sufficient to insure zero axial
displacement, reduces to

Q.(1+ve) E,. E,
— = h = ——-— = .
Se=BS, =0, where B= 5ot = (725 / =) (4.155)
and we made use of the first definition in (1.8). If the residual stresses are thermally induced, so that
S; = — ( fiy_) o; AT, (4.156)
where «; is the CTE of either the coating (i = 1 = ¢) or membrane substrate (i = 2 = s), then
. E,
S.—BS; = — ( ) (e, — a,) AT, (4.157)
1-v,
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which vanishes only if the membrane and coating have the same CTE.

Figures 6 and 7, which follow, compare our solutions for the axial and radial displacements with geomet-
rically linear finite element (FE) solutions of the same problem. The model considered here is an initially
parabolic membrane with a single coating. It has a radius of a = 10 cm = 0.1 m, and an f-number of 2,
ie., F# = 2, corresponding to k = 1.25/m, see equation (1.18). The coating has thickness h; = h, = lum,
and the membrane thickness is hy = h, = 20pum. The coating modulus is taken to be E, = 44.0 GPa, and
the membrane modulus E; = 2.2 GPa. We assume the Poisson’s ratios of the coating and membrane to be

the same, viz., ¥, = v; = 0.4. The assumed intrinsic stresses in this example are small: S, = —5 KPa and
Ss; =20 Pa.
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Figure 6: Comparison of theory to geometrically linear FE u-displacement results (free edge/simply-
supported at the center).

4.2.3 Pinned, or Hinged, Edge

The boundary conditions for a coated membrane with pinned (or hinged) edge are w(a) =0, u(a) = 0, and
Mp(a) = 0. In terms of the dimensionless coordinate p, we have @(1) = 0, so that po = 1 in equation
(4.124), 4(1) = 0 and y,(1) = p. The first condition yields from (4.124):

w(p) = C [ber(k1p) — ber(ky)] + C, [bei(kip) — bei(k;)]. (4.158)

The solution for #(p) is given by (4.120), except that the coefficients C; and C, are not necessarily the same
as those in (4.120), as we shall soon see.

The remaining two boundary conditions, #(1) = 0 and y,( 1) = p, again provide a system of two equations
for the constants C; and C;. We note that since %(p) and W,,(p) have precisely the same forms as in the
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Figure 7: Comparison of theory to geometrically linear FE w-displacement results (free edge/simply-
supported at the center).

simply-supported center problem, y,(1) = u duplicates equation (4.142):
berp + boedo + dkr + dykg + p = 0. (4.159)

The equation %(1) = 0, however, is new and this, together with (4.159), leads to the following system of
equations:

p11C1 + p12C2 — (1 — va) ('r - 2q ) =0, (4.160)
Ko

P2iCi + paCo + i — (B + B) ( g ) -0, (4.161)

- 2k,

where po1 = 891 and pps = 820, given in equations (4.149) and (4.150). The matrix elements pi; and p;2
have the comparatively simpler forms :

p11 = kg ber(k)) — k3 uy bei’ (k1) + k1 ug ber'(k1), (4.162)
, D12 = Kobei(k;) + k2 uy ber' (k1) + k1 us bei’ (k1). (4.163)
Solving (4.160) and (4.161) for C; and Cs, we obtain »
= 2w (r-L) -pa e+ (r- ) - s}, (4.164)
!pl 2K, 2K, :
6= -2 fom ) (- L) = pu [0+ 80 (7 - 32) - 4]}, (4165)
|p| 2K, 2K,
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where |p| = p11p22 — p12p21 is the determinant of the new coefficient matrix.
Using the same model described for the free edge problem, Figures 8 and 9 compare our pinned edge
solutions for the axial and radial displacements with the geometrically linear FE solutions.
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Figure 8: Comparison of theory to geometrically linear FE u-displacement results (pinned edge).

4.2.4 Rigidly Clamped Edge, and Coating Stress Prescriptions for Maintaining an Initially
Parabolic Shape

A near net-shape coated membrane used as the primary mirror of a telescope will likely be attached to a
rigid circular boundary, hence the boundary conditions to be satisfied for such applications are those of a
clamped edge. The clamped edge boundary conditions are w(a) = 0, w g(a) = 0, and u(a) = 0 or, in terms
of p, W(1) = 0, W,(1) = 0, and (1) = 0. The first of the boundary conditions leads, as in the previous
problem, to the same forms of the solutions given in (4.158) and (4.120). The coefficients C; and C, in this
case, however, must now be solutions of the two boundary conditions %(1) = 0 and W ,(1) = 0, which can
be written as

c11C1 + €120y — (1 - VA) (7’ -1 ) =0, (4166)

2K,

Ciber'(k;) + Cabei' (k1) = 0, (4.167)
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Figure 9: Comparison of theory to geometrically linear FE w-displacement results (pinned edge).

where (4.167) follows from (4.104), and ¢11 = p11, €12 = P12, where p;1 and py» are given by (4.162) and
(4.163), respectively. Equations (4.166) and (4.167) are easily solved, yielding

q bei’(kl) ]
C, = 1- - = 4.1
1 ( VA) (T 2[90 ) [Cnbei’(kl) - clzber'(kl) ’ ’ ( 68)
q ber'(k;) }
Co = —(1- - . 4.169
2 ( va ) (T 2[410 ) [Cubeil(kl) - clzber'(kl) ( )
In this case, both the radial and axial displacement solutions contain the common load factor
———
TLET T (4.170)

which is the only occurrence of the intrinsic stresses in the solutions. By choosing the parameters in this
factor appropriately, i.e., such that

Noz=nN-PEwIe_, (4.171)
2Ii0

TL=ET ~ 2Zo = 0, or equivalently,
it should be possible to achieve a state of no deformation from the initial parabolic shape. For example, if
there is no pressure difference then one should be able to adjust the coating stress (or one of the coating
stresses of a multilayer coating) to satisfy N' — (v0 g/2k0) @ = 0. In a Og environment, this condition reduces
to N = 0, which for a single coating is equivalent to having a coating stress given by the simple prescription

S, = —%‘i S, . A (4.172)
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Equation (4.171), and its special case (4.172), define what we refer to as “on-design” prescriptions for a
coating stress that will maintain the initially parabolic shape of a coated membrane after removal from the
mold upon which it was cast and coated. Note that this simple prescription holds only for clamped edge
boundary conditions. If the coating stress is less than the on-design value, we say that the membrane is
undercompensated. On the other hand, if the coating stress is greater than the on-design value, we say that
the membrane is overcompensated.

The clamped-edge solutions are perhaps the most important for the analysis of near net-shape coated
membranes used as optical quality reflectors. For this reason, we have carried out a more extensive com-
parison with finite element models than for the previous two boundary value problems. The details of this
work were presented at the 43rd ATAA Structural, Structural Dynamics, and Materials Conference in April
2002 [20], and accepted for publication in 2003 (21]. Here, we reproduce comparisons of our geometrically
linear theory to both geometrically linear and nonlinear finite element results.

The model in this case is a 10 m diameter (a = 5 m), f/2 coated membrane, in a Og environment. The
material and geometrical properties of the coating and membrane are the same as the last two boundary
value problems, viz., E. = 44 GPa, E, = 2.2 GPa, v, = v, = 0.4, coating thickness h, = 1pm, and
membrane thickness h, = 20 um. We have somewhat arbitrarily specified a membrane CTE mismatch stress
of 11 MPa, which corresponds to an on-design coating stress of —220 MPa, calculated from equation (4.172).

In Figures (10)-(13) we show the predicted effects on the displacement components of overcompensating
the membrane stress by either 1%, shown in Figures (10) and (11), or 10%, shown in Figures (12) and (13).
An edge effect beginning some 10 to 20 cm from the edge is observed in both the theoretical and FE results.
The graphs of radial displacement pass through the origin and are linear until the onset of this edge effect,
while the axial displacement curves are quite flat until the edge effect occurs. To enhance the detail of these
edge effects, we have shown in the Figures only the final meter before reaching the edge. As in the previous
cases considered, the agreement between theoretical and geometrically linear FE results is excellent.
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Figure 10: Comparison of theory and finite element results for radial displacement u(R) when the coating
stress is 1% off-design.

However, in Figure 11 the geometrically nonlinear axial displacement is roughly 97% of the theoretical
prediction for the 1% off-design case, while in Figure 13 the nonlinear prediction is only 72% of the theoretical
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Figure 11: Comparison of theory and finite element results for axial displacement w(R) when the coating
stress is 1% off-design.

one. This tendency for the theoretical result (and linear FE results) to overestimate the axial displacement is
made evident in Figure 14, which indicates that for this example geometrical nonlinearities become important
when the coating stress is more than 2% off-design, while the theory is fairly accurate when off-design by

less than 2%.

4.3 General Solution for an Initially Flat Laminate

The solution procedure of §4.2 included several steps involving division by the dimensionless parameter ko
defined by (4.64). For an initially flat laminate, requiring £ = 0 hence ko = 0, these divisions cannot be
made. The solutions for a flat laminate presumably follow from those of the parabolic laminate in the limit
ko — 0 (i.e., the focal length f — 00), but we prefer to return to equations (4.66) and (4.68), prior to any
divisions by kg, and solve them anew. Setting ko = 0 in these two equations yields

[zr + 2o — By (kr + Kp)] , = O,

and p
~A (ke + Kp), + 45 = 0,
each of which can be immediately integrated to obtain
T, + z¢ — By (Kr + Ke) = c1, (4.173)
and \
ke + Ko = €3 + —Z—%—, (4.174)

where ¢; and ¢, are arbitrary integration constants. Using (4.77), equation (4.174) can be written as

—~

~

2
B pp + -“-’p—P = e + 5’4- » (4.175)

D
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Figure 12: Comparison of theory and finite element results for radial displacement u(R) when the coating
stress is 10% off-design.

Multiplying (4.175) through by p yields

3
N ~ A p
PWpp + Wy = (pW,y) ) = cop + T

D[

P
which can be integrated twice to obtain the general solution for w(p):
2 4
D(p) = co + cslnp + ¢ % + %2—4, (4.176)

where c3 and c4 are arbitrary integration constants. We must set ¢z = 0 in order for the solution to be
regular at p = 0, hence the general solution regular at the origin is

2 4

5(p) = A
W(p) = ¢4 + c2 7T A6l (4.177)

Returning to equation (4.173), we use equations (5.39) and (5.40) to replace z, and zg, yielding
1
T, + 29 = = (%r + o) + (b + b)) (kr + kg) = ¢c1 + By (kr + Kg),
from which

r + Qo = ¢ (1-vy) ~ (1=v2) b (kr + ko), (4.178)

where we used the definition (4.50) to replace 8,. Equation (4.174) can be used to eliminate (&, + kg) in
(4.178), yielding

b 2
€hr + €8e =1 (1-v4) — (1-v2) 9% 84— (4.179)
Substituting in (4.179) for the strain components from (4.39) (with f,p = —kgp = 0), we obtain the
following differential equation for %(p):
~ u b p?
U, + -p' =0 (l—VA) - (l—llj) qZ'Z
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Figure 13: Comparison of theory and finite element results for axial displacement w(R) when the coating
stress is 10% off-design.

Multiplying through by p and integrating yields the general solution

) = & b (1eu) 22
u(p) = P + 1 (1-va) 2 ‘(1 vi) g A 16° (4.180)
where ¢s is a final integration constant. We must set ¢5 = 0 to obtain a solution regular at p = 0:
~ p b p®
u(p) = a1 (1 - va) 5~ (1-v3) TR (4.181)

Restoring the dimensional variables and constants in equations (4.181) and (4.177), we write the general
solutions for u(R) and w(R) regular at the origin as

B(p+ Yo g)
(e] 3 —_—
u(R) = e’ R — q,R°, Qu = ——-‘-—'6( D Bz)’ (4-182)

and
_ AP+19
% = I AD - BY)’ (4.183)

where we have introduced new arbitrary constants €°, wp and &, as well as coeflicients g, and g,, containing
the pressure and gravity loads. The three arbitrary constants €°, wo and k must be determined by applying
boundary conditions.

w(R) = wy — ng + quRY,

4.3.1 Flat Pressurized Laminate, Clamped at the Edge

For a flat laminate under pressure, the boundary conditions insuring that the edge R = a of the laminate
remains fixed are u(a) = 0, w(a) = 0, and w'(a) = 0. Applying the first of these to (4.182) yields an

expression for €:
o _ 2
€ = qua,
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Figure 14: Comparison of theory and finite element results for apex displacement w(0) as a function of the
percent that coating stress is off-design.

hence the clamped-edge solution for the radial displacement is
B(p+19)
= 2 _ p?y 2 _ p2). .
u(R) = g, R (a® - R?) 16(AD—B2)R(a R?) (4.184)

The first boundary condition for the axial displacement yields from (4.183) the following expression for the
apex displacement wy:
k
wp = §a2 - guwa’, (4.185)

which brings the solution to the form

k

w(R) = 5 (a® - B?) - gy (a* - R). (4.186)

Setting the derivative of this expression, evaluated at R = a, to zero yields

w'(a) = —ka + 4¢,a® = 0,

from which
k=4q, a? (4.187)
Substituting this result in (4.185) then gives
AlP+79)
— 4 _ _AWPt+9) 4
Wy = qua —64(AD—B2)a' (4.188)

Using k from (4.187) in (4.186), the clamped-edge solution for the axial displacement reduces to

w(R) = g, (a® - R?)® = —6:14 ((Zg Zo—gl) (a® - R?)%. (4.189)
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We note that for a single material, the coefficient B appearing in (4.189) and defined in equation (1.3) is
zero. The axial displacement solution in that case reduces to the one given in equation (62), p. 55 of [22] (if
the effects of gravity are ignored). The general effect of the multilayers is to reduce the composite bending
stiffness D by an amount B2/A. It is also worth remarking that these solutions have no dependence on the
residual stress loads S;. Thus, in the absence of a pressure load, and if gravity is ignored, then g, = 0 and
gw = 0 and both displacements vanish for clamped-edge boundary conditions regardless of the residual stress
levels.

4.3.2 Unpressurized Laminate with Free Edge: Generalized Stoney Formula

We suppose now that there is no pressure load, and that the effects of gravity can be neglected. Then ¢, =0
and ¢, = 0 in the general solutions (4.182) and (4.183) for the displacements, reducing them to

u(R) = €’ R, (4.190)
and
ko
w(R) = wy — -2—R . (4.191)

From these solutions and the definitions (4.18) and (4.19) with T' g = 0, we find immediately that
rr =€ =€, krr = keo =k, - (4.192)
hence the stress resultants and coupleé (4.28)-(4.31) reduce to
NR=N9EN:N+(A+A,,)6°+(B+B,,)k, (4.193)
and »
Mp=Meg=M=-M-(B+B,)e” - (D+ D)k, (4.194)

where N and ‘M are constants. We note that from the definitions (1.2)—(1.6), the summed coefficients
appearing in (4.193) and (4.194) take the forms

N
A+ A, =) hB, (4.195)

i=1

1 N-1 N

B+B, =3 Z hihg (B — By), (4.196)

i=1 k=1+1

1 N
—_ R. A2 — )2 . — £

D+D, = 12; hiB; [hz 4 3(h — h)? — 1261 (h gl)], - (a197)

where we have introduced

E.
. B, =@Q;(1 +1/,-) = 1 _Zw, (4.198)
and made use of the first definition in (1.8), i.e.,
E.
Q=7 (4.199)




to obtain the last equality of (4.198). As mentioned earlier in §3.3, the quantities @; and B; are, somewhat
confusingly, both referred to in the literature as the biazial modulus of the material in layer i. Henceforth, we
reserve the name biaxial modulus for B;, defined in (4.198). Note that the ratio of biaxial moduli occurred

earlier in the condition (4.155) for no axial deformation of a free-edge membrane simply supported at its
center.

We now consider a coated membrane laminate with free-edge boundary conditions Ng(a) = 0 and
Mpg(a) = 0. These two conditions allow the determination of the arbitrary constants €° and k appear-
ing in the general solutions (4.190) and (4.191). In fact, we have found in equations (4.193) and (4.194) that
both Ng and Mg are constants for this problem, so that € and k are simply the algebraic solutions of the
linear system in these two unknowns obtained by setting Ng(a) = N = 0 and Mg(a) = M = 0:

0=N+(A+A)e+ (B+B)k, (4.200)

0=-M-(B+B,)e - (D+D,)k. (4.201)
The solutions are easily found to be

o . —(D+D)YN+(B+B)M
© T @+A)D+D,)-(B+B)

(4.202)

_ (B+BI)N-(A+A )M _
b=y A))D+D,)- (B+B,)? (4.203)

This expression for k represents the generalization to a multilayer coated substrate, with arbitrary layer
thicknesses, of an important result due originally to G. G. Stoney [23]. Note that, as discussed in §1
following equation (1.20), k is the negative vertex curvature of the paraboloid defined in this case by (4.191).
When applied to a substrate with a single coating, it reduces to a result discussed in [24, pp. 140-143], and
can also be found (in various forms) in several recent publications [25, 26, 27, 15, 28].

The remaining integration constant wy = w(0) is the axial displacement of the center R = 0. We assume
that there is at least one value of R, say Ry, at which the coated membrane is simply supported, meaning
that w(Rp) = 0, hence wy = kR3/2. For support at the center, Ry = 0, we have wy = 0, and

Wese(R) = ——g R?, simply supported at the center, (4.204)

and for support at the edge, Ry = a, we have wy = ka? /2, hence

k
Wyse(R) = 3 (a® - RQ) , simply supported at the edge. (4.205)
In either case, w'(R) = —kR and w"(R) = -k, so if k > 0 the axial displacement will have its mazimum
value of wsse(0) = ka?/2 at the center, while for k < 0 it will have its minimum value of wes(0) = 0 at
the center (and the positive value wys.(a) = —ka?/2 at its edge). The maximum axial deflection, which will
occur either at the center or at the edge, is thus

Wnazr = l—’;' a’. (4.206)
Note that under these boundary conditions the requirements for no displacement of the initially flat coated
membrane are €° = 0 and k = 0, which imply /' = 0 and M = 0, the same conditions found in (4.154) for
no displacement of an initially parabolic membrane satisfying the same boundary conditions.

These results can be applied to the design of multilayer coatings that will compensate for curvature in-
duced by residual stresses in the coatings. For example, Cao, et al [29], discuss such compensation techniques
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for reducing or eliminating unwanted curvature due to intrinsic coating stresses in high-reflectance thin-film
micromirrors, and Liu and Talghader [30] discuss compensating for micromirror curvature due to thermal
stresses caused by CTE mismatches between layers. In both papers an extension [31] to multilayer stacks
of Timoshenko’s [32] one-dimensional analysis of bimetal thermostats is used for a preliminary analysis of
the residual stress effects, replacing each instance of a modulus E by the biaxial modulus E/(1 — v) (but
continuing to denote this biaxial modulus by the same symbol E). For comparison with Figure 3 of Ref-
erence [29] we have plotted in Figure 15, below, the absolute value |k| of our vertex curvature (4.203) as a
function of the thickness h; (in nanometers) of an outer dielectric coating of SiO2, placed over a gold coating
of thickness hs = 0.5 um on a polysilicon membrane substrate of thickness hz = 3.5 um. We have used their
data for the various layers, viz., E; = 80GPa, S; = 100 MPa for the SiO; outer coating, E» = 80 GPa,
So = —100 MPa for the interior gold coating, and E3 = 125 GPa, S3 = 0 for the polysilicon substrate. The
curvature corresponding to a displacement from an initially flat surface of wpae = |A/10| defines a “flatness
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Figure 15: Absolute value |k| as a function of thickness of outer SiO dielectric coating layer.

window” for the allowable thickness variation of the SiO, coating. This curvature can be found from (4.206),
ie.,
A

Wmaz __ A
M = 2Pz = 2 (4.207)

which requires knowledge of the specimen size. In Reference [29] the specimens were square with sides of
length 200 um, corresponding roughly to circular specimens of radius a = 100 um. The curvature corre-
sponding to this radius is

k| =

o >

x 108, (4.208)
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so that for visible wavelengths on the order of 500 nm, we have

k| ~ 10, (4.209)

corresponding to the line |k| = 10 in Figure 15. We observe that for this particular case our flatness window
is about 63 nm, compared to the much narrower 20 nm flatness window shown in Figure 3 of [29]. Based on
correspondence with Professor Talghader, it is believed that the discrepancy is due to either a typographical
error in the data reported for Figure 3, or an error in the simulator being used at the time of publication. A
rerun of their current simulator with the data used here shows excellent agreement with the result reported
in our Figure 15. It should be noted that the thickness required to flatten the mirror is generally not the
same as that which would zero out the radial expansion or contraction given by (4.190) and (4.202). In
Figure 16 we show the variation of radial edge deflection u(a) = €°a in nanometers as the SiO, thickness

increases, using the same data as that of Figure 15. The flatness window corresponds to a maximum radial
expansion of about 3 nm, and a minimum of 1.5 nm.
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Figure 16: Radial edge displacement u(a) as a function of thickness of outer SiO, dielectric coating layer.

5 Geometrically Nonlinear Shell Laminate Problems

In this final Section we present the geometrically nonlinear theory of a coated membrane shell. Such prob-
lems are notoriously resistant to analysis in terms of known elementary or special functions. We specialize
immediately to the axially symmetric and initially flat subset of these problems. Our hope was to generalize
to stress-coated multilayered plates some of the earlier work [33, 34] on plates of a single material with no
residual stress. In the work cited, Chia [33, pp. 112-115) applied perturbation theory to find approximate
solutions of the plate problem, while Way [34] attacked the problem with power series expansions, a tech-
nique that had been used much earlier by Hencky [7] in solving the equations of membrane theory. As we
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shall see, the existence of residual stresses and the appearance of additional terms due to the multilayer
structure, greatly complicate the solution by either perturbation series or power series methods. Our efforts
to this point have been for the most part unsuccessful, and we must be content to simply record what has
been accomplished in the hope that it may be useful as a reference point for others interested in these types
of problems.

As in §4, the leading order displacement components for a nonlinear shell laminate have the Kirchhoff-
Love forms given in equation (8.31.I) of Reference [1]:

Uz=w, Ur=u-Zwg, Us =u—z-}-§-, (5.1)
where u, v, and w are functions of R and © only. The strain components given in equations (8.35.1)—(8.40.I),
however, contain nonlinear terms in the displacement component derivatives:

_ 1 ue—v I grwe W RW,O W RO w,e> 0
€R® = 3 v R+ 7 + I + 7 -2Z ( I T2 = €gpo — Zkro, (5.2)
1
€RR = UR + P,Rw,R + Ew’zR - Zw,RR = E%R — Z kgnr, (5.3)
Ve +u w? @ w’@e — 0
e = R + 2—}{2' - Z( R R2 ) = Ee@ - Zk@@, (54)
where the Z-independent terms of the last three equations are given by
1 ue—v I pw w RW w w
0 _ ,© RW,© RW,© _ ,RO 0
= = 2 2 kpro = — —= .
€ro 2 ('U,R + R + R + R ) ) RO R + R2 ’ (5 5)
0 — : 1, _
€RR = UR + F’R’LU’R -+ Ew’R, kRR = W,RR; (5‘6)
’ 2
0o _ Vetu We _ WR w00
0 ="f Tom: Me=Tp R 5.7)

_ The equilibrium equations are given in terms of stress resultants by equations (8.130.1)—(8.132.1):

(RNRr) g — No + Nre,e =0, (5.8)

(RZNR@)’R + RNgo =0, (5.9)
and

we we -
[R (w,RNR + = Nre + QR)],R + (w,RNRe + 5 Ne + Qe),e +(p+109)R=0, | (5.10)
where we recall that w(R) = w(R,©) + ['(R). The shear stress resultants Qr and Qe appearing in the
last equilibrium equation can be eliminated in favor of stress couples, which yields the alternative equation
(8.140.1) of Reference [1]:

[R (w,RNR + E}’%QNRG) + (RMR),R - Mo + MR@,@] R
’ (5.11)

1.
-—M@,@] —{-(p+70g)R=0.

+ [wRNR@ + -——N@ + (R2 MR@) R
,©
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The stress resultants and couples appearing in the equilibrium equations are given by equations (8.141.1)-
(8.146.1):

Nr =N+ Aedp + Ay Qg + Bkrr + B, koo, (5.12)
Nro = Ao €}ho + Be kro, (5.13)

No =N + A, %p + Aedg + B, krr + Bkeo, (5.14)
Mp = -M - Beyp — B,y — Dkpr — D, keo, (5.15)
Mpe = —Bo €% — De kro, (5.16)

Mo = -M ~ B,e}p — BeQg — D, krr — Dkeo, (5.17)

which are the same as those of the previous Section, except that the strains contain nonlinear terms, according
to equations (5.5)-(5.7). The constants appearing here, as elsewhere, are defined in §1.

5.1 Reduction to an Axisymmetric System

The reduction to an axisymmetric system follows along the same lines as §4.1, i.e., we assume that all
variables are independent of ©, and find from equilibrium equation (5.9) that

Npro = 0, for all R, (5.18)

hence from (5.13), since kre = 0 from (5.5) (and Ag is, in general, nonzero):

e = -;- (v,R - %) = 0. (5.19)

The last equation can be integrated to give v(R) = vy R, where vg is an arbitrary constant, hence if v vanishes
for any non-zero value of R, then v vanishes for all R. These results imply from (5.16) that

Mpe = 0, for all R. (5.20)

Noting that equation (5.11) can be integrated once (and the integration constant discarded to insure regu-
larity), the system of equations to be solved thereby reduces to the following:

(RNR) p = Ne = 0, (5.21)
R?
(RMg) p = Mo + R (wr +Tr) Nr + (p + 709) 5 = 0. (5.22)
where
Np =N+ Aedp + A, Q¢ + Bkrr + B, koo, (5.23)
No = N + A, f?iR + AE%Q + B, krr + Bkoo, (5.24)
Mp = -M -~ Behgr — B, g — Dkrr — D, koo, (5.25)
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Mo = —-M — B, &% — Belo — Dy krr — Dkoo, (5.26)
and
1
¢xr = ur + L RWR + ‘2"’»0,2127 krr = W RR, (5.27)
U - Wwpg
do = B’ koo = = (5.28)

As in §4.1, we transform these equations to dimensionless forms by introducing a dimensionless coor-
dinate p, dimensionless displacement components % and @, and a dimensionless initially curved reference

surface I, defined by
R

~ T
= —, u= E, W= Eu—, r=-, (5.29)
a a a a
together with the following dimensionless constants:
A, — A N M (P + n9)a
= -, E=—(1- 2 5 = =, = = N = ——, 5.30
A=A pU-vd) T HEgp O Eh (5:30)
and four dimensionless dependent variables z.,., g, ¥, and yg defined by
z =NR—N =N@)"'N =MR+M ___M9+M (531)
" Eh’ *= TEn "= "FEha ' YT "Eha '
We also introduce dimensionless curvatures k, and kg defined by -
Kr = akRR = ﬁ,pp ‘Kg = ak@e = -—p’—p, ) (5.32)
and four new dimensionless constants
B B, D D
b= =—, b ==-d==-7p, dy = =", (5.33)
Eha Eha E ha? Eha?

noting that the strain components are already dimensionless, and have the following forms in terms of the
dimensionless variables defined above:

~ 1 u
0 ~ -~ ~2 0 _
€pp = U, + T, W, + 300 oo = ; (5.34)
The strain components must satisfy a modified form of the compatibility condition (3.40), viz.,
~ 1
0 0 ~ ~3
pedo, = €rr ~ €0 — LoD,y — 5We (5.35)
and there is an additional compatibility condition involving the dimensionless curvatures:
pPRep = Kr — K¢, (5.36)

which is easily derived from the definitions (5.32).
Substituting these dimensionless quantities into the equilibrium equations (5.21) and (5.22), we reduce
them to

1
Trp + ;(mr —1z9) =0, (5.37)

and

1
Yrp + ;(yr - ys) + (w,p + F,p) (r+2r) +q5 =0, ‘ (5.38)
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respectively. The constitutive relations (5.23)~(5.26) take the forms
1

z, = 1—_—113 (¢hr + vaedo) + bk, + b, kg, (5.39)
1 0 0

T9 = p— (va€ehr + o) + by K + brg, (5.40)

Yr = —begp — by €edg — dk, — d, kg, (5.41)

Yo = —b,ehp — bedo — d, Ky — dks. (5.42)

Equations (5.39) and (5.40) are easily solved for ¢} and €3¢ in terms of the z’s and &’s:

C%R =2 — vaTg — B — By Ko, (5.43)

6%6 =g — VAT, — By ke — BkKy, (5.44)
where we recall the definitions first given in (4.50):
,3 =b- vab,, ’ﬁ,, = b, — vab. (5.45)

We note here that the dimensionless radial displacement component can be expressed in terms of z, and zy,
and &, and kg (which themselves depend only on derivatives of @), by combining (5.34) and (5.44) to obtain

u(p) = p(zo — vaz, — Bukr — Bry). (5.46)

Taking the derivative with respect to p of (5.44) and substituting the result, together with (5.43) and
(5.44), in the e-compatibility relation (5.35), we obtain

a 1.
p(Zop — VaZrp — Pukrp — Bkep) = (1 + va)(z, — z9) — (B — Bv) (ke — Kg) — F,w, — Ew:"p.

In this expression, we use (5.36) to replace (k. — kg), and (5.37) to replace (z, — z5), which yields the
following result for the compatibility condition:

-~

1

pler + 29 = By (ke + Kg)] , = -, D, — 5T (5.47)
Next, we substitute (5.43) and (5.44) in (5.41) and (5.42) to obtain
Yr = —Par = Byxp — dK; — b, Ky, (5.48)
Yo = —Buar — Bxg ~ 8, Ky — Ky, (5.49)
where we introduced another pair of constants:

6=d-b8-0b,4, 6, =d, - b8, — b, (5.50)

The derivative of y, with respect to p yields from (5.48):
Yrp = —BTrp — BuTop — Okrp — 6, Ko,p- (5.51)
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From the last three equations we obtain

Yrp T ';’(?/r - yp) = ~Bxrp — Bz, — ‘Skr,p — b, Kg,p
- %[(ﬂ = B)(xr — zg) — (0 = &,) (kr — Kg)]-

In this expression, we again use (5.36) to replace (k, — kg), and (5.37) to replace (z, — z5), which simplifies
it to
1
Yrp + ;(yr ~ys) = =By (&r + T9) , — 0 (kr + Ko) ,- (5.52)

Substitution of (5.52) into (5.38) yields the following form of the axial equilibrium equation:
By (2r + 20), — & (kr + Ka) , + (@,p +8,) (42 + q-’2Z = 0. (5.53)

Equation (5.37) can be used to eliminate zp in (5.47) and (5.53), and the problem we are left with is to
solve the coupled differential equations (5.47) and (5.53) for @ and z,. The radial displacement % is then
determined from (5.46).

5.2 Approximate Solutions for Initially Flat Laminates Using Perturbation
Methods

Here, we apply perturbation methods to an initially flat coated membrane laminate, for which f(p) = 0. The
problems we consider will be of two distinct types. In the first we are concerned with finding approximate
pressure -vs- axial displacement relations for fixed residual stress loads defined by 7. In the second, the
pressure and gravity loads defined by ¢ are assumed absent, and we investigate the compressive intrinsic
coating stress contained in 7 required to produce buckling, i.e., out-of-plane deflections of the laminate from
its initially flat state.

5.2.1 Pressure Versus Axial Displacement Curves

For the first type of problem, we follow Chia [33], assuming series expansions for the dimensionless variables
(which, however, are not the same as Chia’s dimensionless variables) in a perturbation parameter w = @(0),
the central axial displacement, viz.,

D(p) = Y wa(p)w" = wi(p)w+wz(p) W +ws(p)w’ +.... (5.54)
n=1
zr(p) = Y za(p)w" = z1(p)w+ T2(p) W¥ + T3(P) W’ + ..., (5.55)
n=1 ’
and
q=anw"=q1w+q2w2+q3w3+.... (5.56)
n=1

Denoting a derivative with respect to p by a “prime”, we then have

~ ! n ~ _ " on _ ! n
W, = E w, W, Wy = z w, w", Tpp = E z, w". (5.57)
n=1 n=1 n=1
'

The nonlinear terms appearing in equations (5.47) and (5.53) are given to fourth order in w by

(@) = (w))?w? + 2w} whw® + [(wh)? +2w) wh] w' + ..., (5.58)
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and

(W) (zr + 7) = wiTw+ [w) (z; + 7) +wy )] W+ [wh (z2 + 7) + wy (21 + 7) + wh 7] WP
+ [w) (z3 + 7) + wh (22 +7)+wy (2 4+ 1) +wy ] W4 (5.59)

respectively. When these perturbation series are substituted in (5.47) and (5.53), we obtain the following
equations as coefficients of the indicated powers of w for the first four orders:

’ ]
plozi +22) — o (uf + %) =0, .
W (5.60)
Nt
B oz +21) + 6 (wf + %) ~ Lgip ~ ujr =0,

N
plpxy +222) = Bup (wé’ + %) + 3 w))? = o,
w*: (5.61)
It
B (pzh + 2z5) + 6 (wfj + '—”;,2) - iqp—w(z +7) —wyT =0,

r\!
plpzs +2z3) - B, p (wé’ + -'-”,-,1) + wlwh = 0,
W (5.62)
N\
Bo (pzh + 2z3)' + 6 (wg’ + -'%‘l) —t@p—w (T2 +7) - wh(z; +7) - wyT = 0,

N/
ppzy + 2z4) - Byp (wf{ + %‘1) + % [(w§)2 + 2w} wg] =0,

wh: , N (5.63)
Bo (07 + 224) + 6 (w) + %)~ Laup — w) (25 + 1)
—wy (T2 +7) —wi(zy +7) — wyr = 0.
The boundary conditions for a rigidly clamped edge at R=aqa, or p=1, are
u(1) = o, @(1) =0, and @,(1) = 0. (5.64)

Recalling equation (5.46) for %(p) in terms of z,, x4, and @, and using zg = pz., + z, from (5.37) to
replace z4 in (5.46), the first boundary condition of (5.64) is equivalent to

xT‘»P(l) + (1 - va) z,(1) - B, ﬁ},pp(l) =0, (5.65)

where we used the third boundary condition to eliminate the term proportional to 5. Substitution of the
perturbation series (5.54)-(5.57) in these boundary conditions yields the rigidly clamped edge boundary
conditions on the perturbation coefficient functions, viz.,

2,(1) + (1 — va) za(1) = B, w!'(1) = 0, wp(l) =0, and wj(1) = 0. (5.66)

In addition, we have the so-called “false” (35, p. 167) boundary conditions on the functions wy, evaluated on
axisat p=0:

wi(0) =1, and w,(0) =0, for n#1, (5.67)

which follow from the requirement that the apex displacement @(0) = w in (5.54).
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As our first application (although somewhat of a digression), we consider the specialization of these
perturbation equations to true membranes. Comparing equations (3.43) and (3.39) of §3.2 to equations
(5.47) and (5.53), respectively (with T'(p) = 0), we see that the geometrically nonlinear membrane theory
follows from the latter equations by setting 6 = 0 and 8, = 0. The system (5.60)—(5.63) of perturbation
equations thereby reduce to

p(pe) + 221) =0,

Wt (5.68)
“%(11/3 - wjllT = 0:

[ oz +2m) + Fwl)’ =0, |
w? (5.69)
~1gp— wi(m + 1) —whr =0,

. p(pxh + 223) + wiwh =0,
w (5.70)
—Llgp—wi(ze + 1) —wh(21 +7) —wyT =0,

p (oo +224) + § [(wh)” + 20} wj| =0,
wt: (5.71)

—tap—-wi(zs +7) —wh(ze +7) —wy (1 +7) —wyT =

=

ppzh + 2z5) + (wiwy + whws) =0,
W : (5.72)

—%Q5P—w'1($4+7') —wh(zs +7) —wy(ze + 7) —wy(z1 +7) —wzT =0,

where we have appended the fifth-order equations. The boundary conditions (5.66) for a rigidly clamped
edge reduce to

zi (1) + (1 — va) z,(1) = 0, wy(1) = 0, (5.73)

n

noting that the boundary condition @,(1) = 0 of (5.64) does not apply to a true membrane. The apex
displacement conditions (5.67) are unchanged. In the process of solving these equations for the functions
z;(p), the following identity is useful:

1 1
(pz) + 2z;) = [;(pzxi)l] . (5.74)
Beginning with the first of equations (5.68), two integrations give the general solution
c
z1(p) = & + ;ﬁ—, (5.75)

where ¢; and ¢, are arbitrary integration constants. We must set ¢o = 0 to insure that z; is regular at p = 0.
The first boundary condition of (5.73), with n = 1, then yields ¢; = 0 hence

z1(p) = 0, Vp. (5.76)
The second of equations (5.68) can be integrated to give the general solution

wi(p) = - 2= + cs, . (5.77)
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and the first condition of (5.67) yields c3 = 1, hence

wi(p) = 1~ 4—‘11;102. (5.78)

The second boundary condition of (5.73), with n = 1, then yields
q = 4T, (5.79)
and the w;-solution (5.78) reduces to
wi(p) =1~ p% = w6 =-2p (5.80)

Substituting for w] in the first of equations (5.69), two integrations give the general solution

1 1
n2(p) = a1 = 2p°, = zH=--p (5.81)
4 2
where one integration constant has been set to zero to insure regularity. The first boundary condition of
(5.73), with n = 2, then yields
1 (3-wy
= = .82
‘@ 4(1—-1/,4)’ (5.82)
which can be substituted in (5.81) to obtain
_ 1 3- VA 2 .
i) = (324 - ). (5.89)

Substituting for z; and w; in the second of equations (5.69), and integrating the result once, yields

w(p) = (1- 2) 7 + e, (5.84)

and the condition (5.67) with n = 2 forces ¢; = 0. The final boundary condition wz(1) = 0 then gives
g = 47, (5.85)
which yields from (5.84):
wy(p) = 0, Vp. (5.86)
Continuing, we substitute wy = 0 from (5.86) in the first of equations (5.69), which leads to the solution
z3(p) = 0, Vp, (5.87)

after applying the first boundary condition of (5.73). Substituting for z;, z, w) and w) in the second of
equations (5.69) yields an equation which integrates to

-1 4a_ @B 1 (3-va\ » 2 .
wip) = ~goot - Rt L (F224) 24 (5.89)

after setting the integration constant to zero to satisfy w3(0) = 0. The boundary condition w3 (1) = 0 then
gives

_ 1 5_VA
g3 = 47 + 2 (1“1/_4)’ ) (589)
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which yields from (5.88):
1 - 1
W3(P)=§7P2(1—P2), = w's=Z‘T‘P(1—2P2)- (5.90)

Proceeding in the same way for the next two orders we obtain the following solutions:

1 1+wv4

— _ a2 _ 2

g4 =4T7 (592)
— 1 2 2 1 _ 1 9 2 .
wilp) = —g=p* (1-¢"), = wy = --p(1-27°), (5.93)
for n = 4, and

____L 1+wvy 2 _ 2

wlp) = - g [T - 2 (3 - 24 (5.949)
_ 1 19+ 5vy

q5_47+1447_( 1—1/,4)’ (5.95)
ws(p) = ~ 5762 ( 1-va )” e ( 1-v4 ) SEREVVPT L (5.96)

for n = 5. Note that ws(p) = —ws(p), and z5(p) = —z4(p). Substituting the solutions ¢;, 1 = 1,...,5 into
the perturbation expansion (5.56) for the dimensionless load g, we obtain

1 [5—vy 1 1945wy
_ 2, 8, 4 1 3 5
g=4tw(l+w+uw’+w +w)+2(1_VA)w +1447‘( T )w. (5.97)

The sum occurring in the first term on the right-hand side is a finite geometric series, hence we can write
(5.97) in the form

1—wb 1 (5—vy 1 19+ 5vy

-4 - 3 5, .98

g Tw(l—w)+2(1—u,4)w +1447’(1—VA w (5.98)

Restoring dimensions using the definitions in equations (5.29) and (5.30), noting that w = wo/a, we can
write this in terms of the physical variables (ignoring the effects of gravity) as

hwo [N [1-uP 1 /5—va\ = fwo\2 1 E2h 19+ 5v4 wo \ 4
=4-— [= = E(— — | —— ] |— . .

p aa[h(l—w)+8(1—uA (a)+576N<1—VA)(a) (5.99)
Equation (5.99) is similar to Equation (3) of the Beams paper [8] cited in §3.3, if we replace his Tp by N'/h,
and replace our finite geometric series by 1. However, the coefficients of his third and fifth-order terms are a
factor of 2 greater than ours, and there is a difference in the dependence on Poisson’s ratio in the fifth-order
term.

Returning now to the general plate perturbation equations (5.60)-(5.63), we assume that the tensile
residual membrane stress dominates 7, so that 7 is positive. It follows that the parameter 4 defined by

72 = g—, where A =46 -+ ﬂg =d — (1 - Vﬁ) bz, (5100)
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is also positive (the constant A was introduced earlier in equation (4.69)). It is convenient, then, to introduce
a new independent variable

z = vp, (5.101)

and new perturbation functions defined by

Wi(z) = wa(z/y), Xn(z) = z0a(z/y). (5.102)

Our system of perturbation equations can be written in terms of these new functions, and the variable z, as

' wi'
z(zX] +2X;) —ﬂ,,'yzz(Wl”+ —z-l) =0,
w! : (5.103)

!
Bu (X +2X) + 697 (W) + X)) — oo - Wir =,

N

z (2 X} +2X) - B, 7%z (WY + ) 4+ i ) =0,

w: (5.104)
!

B, (zX} + 2X5) + 672 (W; + ”—Vz) —fmr - W (X1 +7) - WT=0

})

Y
z (@ Xy +2Xs) — fy?s (WY + %) 4 2wiwy = o,

v ' Wi/ (5.105)
B (zX} + 2X3) + 647 (Wg' + %) - m
-Wi(Xo +7) - W (X1 +7) - Wit =0,
i\

z (@ X} +2X) - B,Pa (Wi + %) + gy [w2)? + 2wy wi] = o,

wh , ! (5.106)
by 200 5 7 (904 5) — e~ W0t <
Wiz +7) -W3 (X1 +7) - Wit =0.
The boundary conditions for a rigidly clamped edge at p=1,ie,z=1,are

YXn (1) + (1 = va) Xn(7) — P28, Wi (y) =0, W’?('Y) =0, and W)(y) =0, (5.107)

and we must also satisfy the false boundary conditions on the functions W,, evaluated on axis at p=0,
equivalent to £ = 0:

Wi(0) =1, and W,(0) =0, for n#1. (5.108)
From the first equation of (5.103) we have
/ Wiy’
(zX] +2X1) = B.° (W{' + -x—l) : (5.109)
This can be substituted in the second equation of (5.103) to obtain
Wi

'
" q1 "
(W1 + = ) 277 T Wi = 0,
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where we used (5.100). This equation can be integrated once, and written as

!
W + —V% - Wy = Q2% + Cs, (5.110)

where C3 is an arbitrary integration constant, and

_1laq
= i (5.111)

The solution regular at z = 0 of the homogeneous differential equation associated with (5.110) is Io(z),
where I is the modified Bessel function of order zero, i.e.,

Win(z) = Cy Iy(z), (5.112)
where C] is another integration constant. A particular solution is easily found to be
Wip(z) = —Q1 2% + C, (5.113)

where C, is a new arbitrary constant. The general solution is the sum of the homogeneous and particular
solutions:

Wl(:c) = C; Io(iL‘) - Q1$2 + Cs. ) (5.114)

The conditions to be satisfied by W; are obtained by setting n =1 in (5.107) and (5.108). Thus,

Wi(y) =0, Wi(y) =0, and W;i(0) = 1. (5.115)
The third condition yields C; =1 — C}, and the first condition then gives
1- Q1’72 V
C = ——. 5.116
T 1-L() (5:116)
Since Cy = 1 — (4, we thus have
g (100, :
Cy = ——rr——+. 5.117
S AYC%) (5.117)
The final boundary condition, W(v) = 0, will determine Q; or, equivalently, g;. From (5.114) we have
- Wi(2) = C1L(z) — 2Q1z, (5.118)
noting the identity , ‘ A
Iy(z) = Li(=). (5.119)
Evaluating at z = « yields
1- Ql')’z:‘
0=C 6L~ - 201y = | —22 | I(7) - 2Q1, 5.120
11i(7) — 2Quy [1_10(7) 1(7) = 2@y (5.120)
which can be solved for ;. Thus, '
5Li(v) 1 [10 16 A2 .
= =S |l= + 5 + 5 + 00, 5.121
Y= SREm+2-okhm) ¢ e Ty T T O (5-121)
and L) 10
=497 L7 ]=645+—'r+702, 5.122
BEEYT ARG 2 - 2h()] 9 . (5.122)
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where the second equality made use of the following power series representations for the Bessel functions:

1 1 1
h(n =1+ 37+ o7 + 757"+ (5.123)
1 1 1
1h(7) = 572+Ig74+m’76+~-- (5.124)

We next integrate (5.109) once to obtain
WI
zX] +2X, = B,+° <W1" + —;—) + Cy, (5.125)
where Cy is an arbitrary integration constant. From (5.118) we obtain for the second derivative of W;:

Wi(z) = Gy [zo(x) -1 <x>] - 20, (5.126)
using the identitity
I(z) = Iz) - %11 (z). (5.127)
Substituting from (5.118) and (5.126) into (5.125), we find
zX] +2X; = B,72C Ip(z) + Cs,
where Cs is a new constant. Multiplying thru by z and making use of the identitity
zly(z) = [z (2)], (5.128)
we obtain after one integration the general solution for X; (z):

I C C
@) = e 2D & G

We set Cs = 0 to insure regularity at = 0, obtaining

Xi(z) = B ¥’ Cy % + 9-23 (5.129)

The arbitrary constant Cs must be determined by the first boundary condition of (5.107) with n = 1, viz.,

YX1() + (1= va) Xa(7) = ?B. W/ (7) = 0. (5.130)
From (5.129) we have
Xi(z) = B Cy [%l - 2%%] (5.131)

and we substitute from (5.131), (5.129), and (5.126), evaluated at z = v, into (5.130) to obtain the following
expression for Cs:

Cs =2 (1 @/IYIA> [VACl Il(')’) - 2’}’Q1] (5132)

Substitution of this expression into (5.129) completes the solution of the first-order perturbation equations.
In the second-order equations, we have from the first equation of (5.104):

X +2X) = 8,42 [wr Wi _ 2 w2 5.133
(zX; + 2) = Buy 2+z 2z'( e (5.133)
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which we substitute into the second equation of (5.104), obtaining

' Wi X Y
(W2” + u;2) _ W2, =20Q.7 + Wll + hAS Walnt S + I[;TZ; (W{)z, (5.134)
where 1 | E
Q; = Z%_ (5.135)

Substituting in the right-hand side of (5.134) for W] and X; from (5.118) and (5.129), respectively, yields

w! ! . » 22
(Wz” + __2) - W2I = 2 (Ql — Q2 _ C5Ql + IB 'Y Ql) x
z 27 T

1 3,°C2 @)
+ C1 [1 + 27 (2ﬁv’)’ Q1 05)] ILi(z) + 2 z

Using (5.119) and the identity
| [3(z) - ()] = 25—, (5.136)
the last equation can be integrated once to obtain

!

W.
W2”+":;2""W2=CG+(Q1_Q2

G5Oy + 51/72@%) 22

27 T

+a [+ o @a0 - 00)] @) + 2L 1) - B@), 1

where Cg is an arbitrary integration constant. The solution of the homogeneous equation associated with
(5.137) is again Iy(z). However, we have been unsuccessful in finding an appropriate particular solution, due
to the appearance of the quadratic products of Bessel functions in the last term on the right-hand side of
(5.137). This brings to a rather abrupt end our attempt to solve the general perturbation equations past the
first order. The one useful result is perhaps the first-order expression (5.122) for the dimensionless pressure

load:

@ = 4777

L(v) _ 40 _ \
[7[711(7) +2- 210(7)]] =640+ g+ 700, (5.138)

. where the last equality' was obtained by using power series representations for the modified Bessel functions.

From the definitions of § and 7 we have

__Y [p_ (AB’ - 24,BB, + AB] oM
Eha? A? — A2 ’ Eh’

) (5.139)

Substituting (5.138) in (5.56) yields the first-order expression for pressure as a function of the dimensionless
apex displacement, i.e., ¢ = gw, which can be written using (5.139) and the definitions of ¢ and w (to
restore the dimensions) as

pa _ [ 64 AB? — 24,BB, + AB’;’) 0 N 2\ Wo
T {_Ehaz [D ( AT~ Az + S Bh + 70(v%) — (5.140)

When specialized to a single material in which there is no residual stress (hence B =0, B, = 0, and N = 0),
equation (5.140) reduces to a form of Chia’s first-order result:

pa 64D \ wp '
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noting that D = Eh®/[12(1 - v?)] for a single material. This also follows directly from the linear plate theory
of a single material, as evidenced by evaluating equation (4.189) on-axis at R = 0.

It should be noted that one of the major sources of our difficulty involves the appearance of terms
containing the coefficient 3,. We have shown in equation (4.60), and its specialization (4.61) to two layers,
that this coefficient can be written as a sum of terms, each of which depends upon a difference of two Poisson’s
ratios. Thus, if all layers have the same Poisson ratio, this coefficient must vanish, considerably simplifying
the resulting equations. It is unlikely that this will ever be exactly true, but it is perhaps worthwhile
investigating the perturbation solutions obtained by making the assumption that terms containing 8, can be
set equal to zero. We have found that with such an assumption we gain a solution through second order, but
are unable to solve the third-order equations, and so it is here that we end our discussion of the perturbation
series approach to finding approximate pressure -vs- axial displacement curves.

5.2.2 Buckling Due to Compressive Intrinsic Stress Loads

For the second type of perturbation problem, we assume the pressure and gravity loads defined by g to be
absent, and instead investigate the compressive intrinsic coating stress contained in 7 required to produce
out-of-plane deflections of the laminate from its initially flat state. The perturbation series expansions for

o~

@(p) and z,(p) are the same as before, i.e., from (5.54) and (5.55):

w(p) = Z wa(p) w" = wi(p)w+ wa(p) w? + wa(p)w® +.... (5.142)
n=1
zr(p) = ) zalp)w” = z1(p)w + 22(p) w? + 23(p) P + .., (5.143)
n=1

but we now set ¢ = 0 in the equilibrium equations, and construct a perturbation expansion for the intrinsic
stress load 7, assumed to be negative, beginning with the n = 0 term:

T=—Zrnw"‘=—'ro—le-‘rzw2—7'3w3—.... (5.144)
n=0 .

The clamped edge boundary conditions on the perturbation functions, as well as the false boundary condi-
tions, are also the same as in (5.66) and (5.67), i.e.,

zp(1) + (1 = va) 2,(1) - B w!(1) = 0, wn(l) =0, and w)(1) =0, (5.145)
wi(0) =1, and wy(0) =0, for n#1. (5.146)

The nonlinear term appearing in equation (5.47) is given to fourth order in w, as earlier, by
(@)

but the nonlinear term in (5.53) now involves the perturbation series for 7, and takes the form

2= (w))?w? 4 2w whud + [(wh)? + 2w) wh] wh +.... (5.147)

(@) (zr + 7) = —wy 0w+ [w] (21 — 1) — wh 7] W2+
[w) (z2 — 7)) + wh (21 — 7y) — wh 7o) W
+ [wy (x3 — 73) + wh (22 — to) + wh (2; — 1) — wy o] w? +.... (5.148)
When these perturbation series are substituted in (5.47) and (5.53), we obtain the following equations as
coefficients of the indicated powers of w for the first four orders:

Y
p(pai +23) ~ fup (wi’ + ‘—f,*) =0,
W' (5.149)
N\
By (pz} + 21,)' + & (w{' + ﬂp’-) + w7 =0,
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Nt
p(pzh + 232) — Bup (wf’z' + %’?) + 3 (w})’ =0,
w?: (5.150)
Y
By (ozh + 222) + 6 (wf + %) = wf (21 — ) + whm = O,

N
p(pzh +225) — Bup (wh + %) +wjup =0,
Wi . : (5.151)
N\
By (pas + 223) + 6 (wg’ + %&) —w (w2 — ) —wp(z — ) + wym =0,

’ !
p oy + 220) = Bup (wh + %) + F[wh)? + 2wiug] =0,
wh N N (5.152)
By oz + 220) + 68 (wf + %) - wf (e = m)
v —wh (zy — T2) — wh(z1 — 1) + wyTo = 0.
Beginning with eqﬁations (5.149), we note that the first can be used to eliminate z; in the second, yielding
the following equation for w; after integrating once:

wl + %1— + —TAﬂwl = Co, (5.153)
where Cp is an arbitrary integration consfant, and A was introduced earlier in equation (4.69), repeated
here: A=§+ /2 =d-(1-vd)b2 (5.154)
Setting

=2, | (5.155)
equation (5.153) can be written as

wi + ’-"/—}- + N w; = Co. (5.156)

The solution regular at the origin of the homogeneous equation associated with (5.156) is Jo(\p), the ordinary
Bessel function of order 0, and the particular solution is simply Cp/A2 = Cs, hence the general solution is

wi(p) = C1o(Ap) + C2. (5.157)

This must satisfy the boundary conditions (5.145) and (5.146) with n = 1. The conditions w;(0) = 1 and
wi{1) = 0 yield the solutions

1
C]_ = 1——:—"]0(—)\), and Cz =1- Cl. (5158)
The derivative of (5.157) gives :
wy(p) = —C1AJ1(Ap), (5.159)
and the boundary condition w} (1) = 0 then requires X to be a solution of ’
L) =0, (5.160)

that is, A must be a zero of J;, the Bessel function of first order. The first (non-zero) zero of J; occurs at
A = 3.832, hence the smallest value of 7 is, from (5.155):

7o = A2A = 14.684 A. : (5.161)
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Thus, from (5.161) and (5.144), the critical value of 7 above which there will be an out-of-plane displacement,
is

T = -1 = —14.684A. (5.162)

Restoring the dimensional constants using the definitions in §5.1, equation (5.162) yields the following value
for the critical intrinsic stress resultant:

2
Ny = 1408 (D - —B—>. (5.163)

a? A

For a single-layer coating, we have Ay = h.S.o + hsS,, hence the critical coating stress S required for an
out-of-plane displacement is

hg 14.684 B?
Sa = —hes, - 1O (D - 7). (5.164)

Although we have succeeded in continuing the solutions of the perturbation series to higher orders, it is
this result for the critical coating stress that is of greatest interest to us. We thus end our discussion of
perturbation methods here, and proceed to a brief discussion of solutions in the form of power series.

5.3 Power Series Solutions

In 1934, Way [34] published “exact” power series solutions for the geometrically nonlinear plate. In order to
follow his work as closely as possible, we introduce his normalizations of the radial variable and displacement
components with respect to the thickness h rather than the radius a, denoting them by

R a u a
-~ == U= - =-1u W=—-=

R RP R RY R h
Note the correspondence with Way’s notation: our £ is his u-coordinate and our radial displacement u is his
variable p. Our variables z, and z4 correspond directly (in the absence of intrinsic stress loads) to Way’s
variables S} and Sj, respectively, which we distinguish here by X, and Xp, respectively, so that

_ w a

£

i

@. (5.165)

Np - N Ne - N
r Ty Eh 6 T Eh ( )
We also introduce new dimensionless curvatures K, and K defined by
K, = hkpr = Wee = -gh‘,r Ky = hkeoo = —W% = gng. (5'.167)

Way did not consider the effects of gravity. His dimensionless pressure load, which we denote by Q (not to
be confused with Way’s scale-invariant pressure load Q) is related to our ¢ (in the absence of gravitational
effects) by

=P _Ph -
Q= =20 (5.168)

The dimensionless stress load 7 does not appear in his equations, since he is not concerned with intrinsic
stresses.

The equations we must solve are the compatibility equation (5.47) and axial equilibrium equation (5.53),
viz.,

1.
plzr + 29 - B, (K + Kg)] , = —§w,2p, (5.169)
and p
~By (zr + 24) , ~ & (K + ko), + W, (T + z,) + 95 = 0, (5.170)
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using (5.37) to eliminate zg, i.e.,

_ zg = (pTr) ,- » (5.171)
In terms of Way’s variables, these take the forms
1

£[Xr + Xp — B, (K + Kog)l ¢ = —§W?. (5.172)

and : ¢
-B, (Xr + Xg) o —~ D (K, + Kg) g + We(r + X;) + QE =0, (5.173)

where

Xo = (§Xr),5, =X, + EXre (5.174)

and we have introduced new constants

_a, 1 _ (a2 1 1 9 5

Bu = '};,8,, = _E.h2 (B,, VAB), D= (E) 6 = Ehs [D - _E_h (B I/ABB,, + Bu) ’ (5175)
using definitions given earlier. Note that the new constants do not depend on the radius a, and that the
terms proportional to B, do not appear in Way’s equations, as B, and B are zero for a plate consisting of a
single material. Also, for a single material D reduces to the usual bending stiffness EA3/[12(1 — v?)], hence
D reduces to 1/[12(1 — v?)]. It is easy to show that the radial displacement (5.46) in Way’s variables takes
the form

U=¢(Xe —vaX, — B K, — BKy), (5.176)
where the constant B is defined by
B= % 8. ‘ (5.177)
Following Way [34], we seek power series solutions for X, and W having the forms

V o0
Xe(€) = =7+ D ban £, (5.178)

n=0
We(€) = V8 Y cant1 £2711, _ (5.179)

n=0

The series for W is found by integrating (5.179) term-by-term to yield

> 1
W(E) = co + V8 (————) Cany1 €272, (5.180)
nz:;) on+2) 2t ,

where ¢ is an arbitrary integration constant (the value of W when £ = 0). To determine the coefficients bap
and cony1, 7 =0,1,2..., we note that from (5.174) and (5.178) we have

o0 o
Xo = (§Xr)¢ = (—67 + > b2n§2"+1) = -7+ ) (2n+1) b ", (5.181)
n=0 € n=0
hence
(X, + Xo) = [—2r +2 Z<n+1)bzn§2"] =43 nn+ Db (5.182)
n=0 X3 n=0
From (5.179) we obtain _
o0
Wee = V8 Z @n+1)cans1 £, (5.183)
n=0 .
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hence from the definitions (5.167):

o0 oo
w
Kr=Wg =v8 > (n+1) e 82", Ky = —£ =8 > canpr 0. (5.184)
n=0 5 n=0
From these two expressions it follows that
o 0] o0
(K. + Kp) = 2v/8 [Z(m 1) Cany1 52"} =4v8 Y n(n+1)cony €L, (5.185)
n=0 £ n=0

Substituting the appropriate series expressions in the compatibility condition (5.172) and axial equilibrium
equation (5.173), we obtain

oC

00 2
n(n+ 1) (b2'n. - \/S_Bv c2n+l) £2n + (Z C2n+41 £2n+1) = 0, (5186)

n=0 n=0

and

=83 n(n+1) (Bbon + VBDeimss ) € + 28 Y cona €84 - Y 127 + Q6 = 0, (5.187)
n=0

n=0 n=0

respectively. Using Mathematica again, we determined the following recursion relations for all coefficients in
terms of the two unknown coefficients by and ¢;:

D V8 B,
b2k+2 = (—D-}-—B?,)B2k+2 + (D—+B,2,—)C2k+3’ k= 0,1,2,... (5.188)
V8 B, 1
Cok+3 = ECEY ) Bokio + mczus, k=012,... (5.189)
where
1 0 1 k-1
Ci=-|—"=+1b , Copy1 = oo Bom Cok—1-2m, k = 2,3,4,... 5.190
3 8(2\/§+ 061) 2k+1 [(2k+1)2_1]mz=0 2m L2k-1-2 ( )
and
1 k
Bojys = ——— Z Com41 Cokt1-2m, k =0,1,2,... (5.191)

(k+D)(k+2) 2

=0

are essentially Way’s [34] coefficients, with his factor 12(1—-12) omitted in the numerators of the C-coefficients
(as mentioned earlier, this factor corresponds roughly to 1 /D in our coefficients). Our unknown coefficients
correspond directly to his By and Ci, i.e., by = By and ¢; = C;. Thus, for example, when k = 0 in (5.188)
and (5.189) we obtain

_ D 1, 8B, 1/ Q )

be = (D+B2) 29 + (D + B2) 8 (2\/8_ thoa ), (5.192)
_ V8B, 1, 1 1/ Q

“=sorBy2at (D+B2) 8 (2\/§ + b"c‘)’ (5.193)

where we used (5.191) with k = 0, i.e., B, = —c}/2, noting that ¢ = C2.
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The coefficients by and ¢; must be determined, in general, from the boundary conditions. We consider
here a clamped boundary, for which the boundary conditions at the circular edge R = a, corresponding to
£ = a/h = & (Way’s constant ug), are

U(fo) = 0, W(Eo) = 0, and VV,g(ﬁo) = 0. (5.194)
From equation (5.176), we have

U(&) = & [Xo(é) — va Xr(éo) — B, Kr(&0)], (5.195)

noting that Kj is proportional to Wy, which must vanish at { = & according to the second boundary
condition of (5.194). Thus, the first boundary condition corresponds to

Xg(éo) — va Xr(&) — By Kr(€o) = 0. (5.196)

Substituting in (5.196) the appropriate series expansions from (5.181), (5.178), and (5.184), evaluated at
¢ = &, yields for the first boundary condition: '

i [(2n+1——u,4)b2n - \/§By(2n+1)c2n'+1]§§” —(1—va)7 = 0. (5.197)

n==0

From (5.179) evaluated at £ = &, the third boundary condition of (5.194) takes the simple form

o0
> ™t = 0. | _ (5.198)

n=0

The two nonlinear equations (5.197) and (5.198) must be solved simultaneously for the unknown coeflicients
bo and c¢1, and then the second boundary condition of (5.194) yields the remaining unknown coefficient cg,
ie., :

—_— - 1 2n+2
w=-V§ 3 (——2n +2) Y (5.199)

according to (5.180). We note that the coefficients by and ¢1 are, according to (5.178) and (5.183), related
to the values of X, and W, on-axis at £ = 0 by

bp = X,(0) +7, and ¢ = ZB——S_W&(O), (5.200)

respectively. Since W, is proportional to the curvature of the axial displacement, we expect that if the
pressure load changes sign (reversing the curvature), so also must c;.

The solution of the system of two nonlinear equations (5.197) and (5.198) for by and c; is a daunting
task, unless one is able to provide good initial estimates for them. Way partially avoided this difficulty by
first assigning values to by and c;, then solving (5.198) for the corresponding value of § = a/h (again, his
ug). In this way, the second boundary condition was automatically satisfied. This value of & must, however,
produce a radius a, for a given specimen thickness h, near the actual radii of test articles in any experiment
to which the theory is applied. The burden of solving (5.197) and (5.198) directly is thus shifted to that of
choosing values for by and c; that lead to a value of & which provides a suitable a for a given h. The solution
of this difficulty was unfortunately not elaborated upon in Reference [34]. We have found, however, that
for values of & of interest to Way, i.e., for & < 100, approximate values for by and ¢; can be obtained by
keeping only the first two terms of the boundary conditions (5.197) and (5.198), and solving the truncated
equations for by and ¢; (this procedure leads to a cubic equation for ¢;). At any rate, for a given by, Way
proceeded to determine two or three more values of ¢; that would produce values of & yielding radii in
an interval containing the desired radius a. Finally, he used these values to determine by éinterpolation the
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value of ¢; that would give a & satisfying the first boundary condition (5.197), and fixing the radius a. All
other quantities could be determined in the form of power series, using the values for b and ¢; satisfying
the required boundary conditions. ‘

Unfortunately, values of & that correspond to typical coated membrane geometries are much higher than
any considered by Way. For example, the membrane model discussed in §3.3 has a radius of a = 0.0762 m
and total thickness h = 21 um, corresponding to & = 3629, nearly two orders of magnitude higher than the
values of interest to Way. For large aperture coated membrane reflectors having radii on the order of a meter
or more, £ is another one to two orders of magnitude greater stilll The method of truncating each of the
two boundary conditions at the second term and solving for by and ¢; yields completely erroneous estimates
of these coefficients for such large values of £,. We have been thus far unsuccessful in developing a method
for estimating by and ¢; that is applicable to coated membrane geometries.

5.3.1 Scale-Invariant Functions and Constahts

Consider a transformation of the dimensionless coordinate € by an arbitrary scale factor s, generating a
scaled coordinate &:

€ = st (5.201)

We assume that the functions and constants appearing in equations (5.172)~(5.174) transform to new func-
tions under this scaling according to the following general rules:

WE) = W), Ko@) = s" K. (6), Kol€) = s Ka(g), (5.202)

X (€) = 881 X,(8), Xo(€) = s Xo(¢), (5.203)

B, =s™B, D=s" D, 7T=s1, Q =sQ, (5.204)

where the scale factor exponents are arbitrary. For any scaled function f&) = s> f(), we find using

the chain rule for differentiation the following relations between derivatives with respect to the scaled and
unscaled coordinates:

?,E = go~1 fyg < f,g = Sl_a?"é. (5205)
Under these scalings, then, the fundamental equations (5.172)-(5.174) transform to
1= kT . em -t = 1 5 5 2
s [(5"M X, + s'RX) - 5B, (510K, + s Ko)] g = —38" W, (5.206)

-s "B, (s'hX, + sl"”yo)z - s"D (!4 K, + 5170 Ks)

’E
+ 8" PWe (s + sTRX,) + s-l-’ag =0, (5.207)
and _ _ L
k2 Xy = MX, + sMEX, 5. (5.208)
These equations can be simplified to
- — —_— — _ _— 1 —
£ [(Xr + sh7kXg) ~ B, (sh-mb K, 4 sh-m-t Ko)] ¢ = —gshtii We, (5.209)
'B‘V (Yr + sk:—k270),_£_ - D (sk1+m—n—ll —I?r + sk1+m—n—l2 ?o)’z
+ Wg (shtm=r=rr 4 gm-PX)) + sk1+m*’-‘§§ =0, (5.210)
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and . L
Xo = M7 (€X,) 7, (5.211)

respectively. These equations will retain the same form in the scaled variables as in the unscaled variables
if, and only if, the exponent of each occurrence of the scale factor s is zero. The equations are then said to
be form-invariant under the scaling transformation. This requirement leads to a linear system of equations
which can be solved for eight of the nine exponents in terms of the remaining one. For example, we find the
following solutions in termsof m: k1 = ko =r=2m -2, {4 =l =m—2;n=2m; p=m; and t = 3m — 4.
Thus, the fundamental equations are form-invariant under the following one-parameter group (parameter m)
of scaling transformations:

WE) = smW(E), K6 =s"2K (), Ko€) =™ Ky(¢), (5.212)
X, (€) = "™ 2X,(6), Xo(€) = 2™ Xp(¢), (5.213)
F=gm2r B,=s"B, D=2s"D, Q=s"1Q. (5.214)

The subgroup of this transformation that preserves the material constants B, and D, i.e., leaves them
scale-invariant, is obtained by setting m = 0. In this case the dimensionless axial displacement W (¢) is
scale-invariant as well, i.e.,

WE =wE), B, =B, D=D. (5.215)
The remaining functions and constants transform under this subgroup to
K. () = s72K:(£), Ko(€) = s> Ko(€), (5.216)
X.(8) = s72X,(€), X4(8) = 572 Xo(6), (5.217)
T = 3_2 T, -Q = 3‘4Q. (5218)

Using (5.201) to eliminate the scale factor s = £/ in this system, we find the following scale-invariant

combinations: )

— _2 — —

K. = €K, (£), € Ko(€) = € Ko(¢), ' (5.219)

—_— — _.2 —_— —

X (€) = €X,.(6), € Xol€) = € X4(8), (5.220)
Er=£r TQ=¢0 (5.221)

These expressions apply at all points including the edge £, = a/h hence, in particular, Q¢&¢ is a scale-invariant

constant (under the transformations that leave B, and D scale-invariant), and the stress-related functions

€2 X, and €2 X, are also scale-invariant. Way [34] used Q& (his qud) as the abscissa in several graphs, and

discussed scaling properties briefly in the Appendix of [34]. '

|

6 Conclusions

This work is the sequel to a Report [1] in which asymptotic methods were used to derive theories that
would aid in understanding the mechanical behavior of a stress-coated membrane. We have applied those
theories to a number of boundary value problems, obtaining generalizations of well-known solutions for
a membrane, plate, or shell of a single material to solutions for the same structure, but now consisting
of a multilayer-coated polymer material. In particular, we (i) found geometrically linear non-axisymmetric
solutions for a pressurized membrane laminate having a general ©-dependent boundary curve, (ii) determined
linear membrane vibration solutions for a membrane laminate clamped along a planar, circular boundary,
(iii) generalized the Hencky-Campbell [6, 7] geometrically nonlinear power series solutions for a pressurized
membrane to a membrane laminate, and discussed the application of these solutions to the interpretation of
bulge test data, (iv) derived geometrically linear general solutions for both initially parabolic and initially
flat coated membrane laminates, generalizing the Stoney formula for such a structure simply supported at
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its center, and (v) initiated a search for perturbation series and power series solutions of the geometrically
nonlinear theory of an initially flat coated membrane laminate.

Perhaps the most significant accomplishment of this work was the discovery of simple prescriptions for
the coating stress that would maintain the shape of an initially parabolic coated membrane after removal
from the mold upon which it was cast. The details of the solutions, from which these prescriptions follow,
are presented in §4.2 and in particular in §4.2.4. These solutions involve linear combinations of Kelvin
functions. Coating prescriptions are given there for membrane laminates both with, and without, pressure
and gravitational loads. The prescriptions are presently being used in the preliminary design of a near net-
shape stress-coated membrane, and it is hoped that such a structure will be demonstrated for the first time
in the very near future.
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A Elementary Analysis of Stress and Strain Due to CTE Mis-
match Between Membrane and Mandrel

We consider a polymeric membrane cast on a mandrel, and allowed to cure. The membrane /mandrel laminate
is then subjected to an annealing process in which it is raised to a temperature near the glass transition
temperature Ty of the membrane. To analyze the subsequent development of stress and strain in the two
materials, we use the following pair of simple constitutive relations (which follow, for an axisymmetric system,
as the leading order constitutive relations of each theory developed in [1]):

i

E,
Srri = Si + 1.2 (err + vicoo), (A1)
i

i

Seei =Si+1_uig

(eeo + Vvierr), (A.2)

where S; is the in-plane residual stress in material i, given by

S; = 8! - E; o; (T - Tp). (A.3)
1- Vi

Here, we have assumed that the residual stress can manifest either as an intrinsic stress S/, associated
typically with microstructural changes occurring in a material, or as a thermal stress that arises if the
temperature T is different from the temperature T; at which the stress and strain of the material is purely

mechanical. For thermal stress, a; is the coefficient of thermal expansion (CTE) of material i.
We take the membrane/mandrel laminate configuration at the elevated temperature Ty as the strain-free
reference configuration, and compute subsequent deformations from this state. We assume there to be no
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intrinsic stresses in either of these materials, so that after cooling to ambient temperature T the residual
stresses in each are purely thermal, given by

Es

1—v,

as (T—T,), and Sp, = Em am (T — Tp). (A.4)

—1—-Vm

S8 = -
Here, the s-subscript refers to the membrane (since it will be the substrate for an optical coating), and the
m-subscript refers to the mandrel. The o-superscript distinguishes variables prior to coating and releasing
the coated membrane from the mandrel. '
The mandrel is assumed to undergo a free contraction during cool-down to a stress-free state at the
ambient temperature T, so that for i = m the left-hand sides of equations (A.1) and (A.2) are zero, i.e.,
S%rm = Sdem = 0, hence

E
0=252+ -——m—2~ (€hr + Vmedo ), (A.5)
1-vZ
E
0= S:?n + '_“1%‘ (GOG.)@ + Vm€%R) . (AG)
1-v
These equations are easily solved for the two strain components, yielding
o o : 0 1-vm
€hr = €60 = ~Sm | g =am (T-T,), (A7)
. .

where the final result made use of the second equation of (A.4). Substituting these results for the strain
components into (A.1) and (A.2), with i = s, then yields the stress components in the membrane substrate,
ie.,

. ‘ E,
Skrs = Sées = S5 + (1 + vs) am (T —1Ty)

1-12
E E '
= - s - A.
T (T=T) + 1= am (T = T) (A.8)
_ E;
= l_us(as am) (T —Ty),

where the first equation of (A.4) was used to get the second line. For convenience, we write the last equation
as

$s =1 I_Esy,, € (4.9
where
Ss = S%Es = Sg-)@sa (AlO)
and
€ = (a5 — am) (T —T,) (A.11)

is the recoverable strain, i.e., the strain the membrane would experience if released from the mold and allowed
to come to a stress-free state.

As an example, we consider a CP1-DE membrane material (manufactured by SRS Technologies, Inc,
Huntsville, AL) cast on an aluminum mandrel. SRS has provided the following material properties for
CP1-DE:

E; = 2.172 GPa, (A.12)
ve = 0.34, (A.13)
as = 51.2 ppm/°C, - (A.14)
ps = 1.434 g/cc, (A.15)
T, = 263 °C. ) (A.16)
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From the MatWeb website, we find that aluminum alloys have CTE’s of around 24 ppm/°C. Assuming the

final temperature to be an ambient room temperature of T' = 20 °C, the recoverable membrane strain from
(A.11) is

€ = (as — am) AT = 27.2x107%/°C x (~243°C) = —0.00661, (A.17)
or roughly 0.7% strain. From (A.17) and (A.9) the residual thermal stress in the membrane is then
S, = ) E”V €s = 3.291 x 10° x 0.00661 = 21.754 x 10° Pa = 21.754 MPa, (A.18)
— Vs

which we note is positive, hence a tensile stress.

Suppose, now, that a single optical coating is applied to the membrane, and assumed to be perfectly
bonded to the membrane (which itself remains bonded to the mandrel). For generality, we assume the
coating is placed on the membrane at a temperature T, either above or below the temperature T at which
the mandrel is stress-free. When the coated membrane /mandrel is returned to the temperature T, the strain
components are given by (A.7), assuming the mandrel to again be stress-free, but with T, replaced by T..
Substituting these strain components in (A.1) and (A.2), now with i = ¢, yields the stress components in
the coating at temperature T':

E,
1-v,

Skrc = Sée. = Sc’ - (ac—on) (T-Tt), (A.19)
where S! is the intrinsic stress in the coating.

When the coated membrane is released from the mandrel, equations (A.1) and (A.2) again apply, but
with the residual stresses given by (A.8) for the membrane, and by (A.19) for the coating, i.e.,

E,
Sy = St = S8oy = 7= (as ~am) (T~ T3), (A.20)
5
Sc = Sgp. = S%e. = S - 1—‘?7 (ac — am) (T=T,). (A.21)
c

If the coated membrane is first attached to a rigid boundary ring, and then released from the mandrel,
the boundary conditions it must satisfy are those of a rigidly clamped edge. From the geometrically linear
theory of a stress-coated net-shape film with a clamped boundary, the “on-design” residual coating stress
maintaining the initial parabolic shape of the coated membrane after releasing it from the mandrel is derivable
from equation (4.171), i.e., '

N = 2aF#(p + 4 g) = 0, (A.22)
where we have used (4.64) and (1.16) to replace kg in terms of the f-number. For a two-layer system with
no pressure difference, and ignoring the effects of gravity, this reduces to

N = h.S. + h,S, = 0, (A.23)
where h; is the membrane thickness and h, is the coating thickness, hence the required coating stress is

S, = -Dsg (A.24)
he

Assuming for the present that the membrane was coated at the temperature T, = T' where the mandrel was
stress-free, the thermal term in (A.21) is zero, hence the residual coating stress is purely intrinsic:

Se=8= -%ss. (A.25)

Thus, for a 1 gm thick coating on a 10 um thick membrane, and a CTE mismatch stress in the membrane
given by (A.18), the required coating stress would be

st = —$ x 21.754 MPa = —218 MPa. (A.26)

68




Suppose, however, that this prescription stress level SI is not precisely met, but acquires some value
Se=(1+¢)S! = —(1+ ¢)hsSs/hc where ¢ is some number satisfying, say, —0.1 < ¢ < 0.1. Then we have

N = —¢h,Ss # 0. (A.27)

Under these circumstances it may be feasible to apply a pressure difference to null out the displacement, in
which case the condition (A.22) for no deformation becomes

N — 2aF#p = 0, (A.28)
neglecting gravity. According to (A.27) and (A.28), applying a pressure difference of

_ N _hSs
T 2aF# = " 2aF#

P (A.29)
- will thus maintain the initial parabolic shape. For a one-meter diameter f/2 mirror with membrane CTE
mismatch stress 21.754 MPa, as in (A.18), and undercompensated by a coating stress that is 90% of the
prescribed value (¢ = —0.1), the required pressure difference would be very small: p = 10.9 Pa, or about
0.0016 psi.
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